
Insert

Custom

Session

QR if

Desired.

The Skinny on Coupling Thin Interrupts

Session 16644

Frank Kyne

Editor and Technical Consultant

Watson and Walker

© Copyright Watson & Walker 2014,2015

Session objectives

+

+

+ Me

© Copyright Watson & Walker 2014,2015

Welcome

• Hi, thanks for coming

• Who I am and what I do

• What we are going to talk about:
– WHY good Coupling Facility response times are important to your

business.

– WHAT Coupling Thin Interrupts are and HOW they contribute to
better CF response times

– WHEN to fine tune your overall CF response time profile by
manipulating XES thresholds

• PLEASE ask questions as I go along

© Copyright Watson & Walker 2014,2015

Why care about CF response times?

• CF response times are so short (measured in microseconds),

why would you care about them?

• A typical data sharing customer does 2-3 times as many CF

requests as DASD I/O.

– Yet most companies spend far more time, money, and resource

on DASD performance management than they do on CF

performance.

© Copyright Watson & Walker 2014,2015

Why care about CF response times?

• AND, for DB2 data sharing at least, most DASD I/Os happen
before the txn starts, or after it completes:

– Prefetch data

– Some DB2 log writes are asynchronous to transaction
execution

– Updated data is hardened to database after transaction ends

• But most CF requests happen during the life of the txn.

– Get locks

– Register interest in data in the GBP

– Retrieve copy of data from GBP

– Write updated data to GBP

– Release locks

© Copyright Watson & Walker 2014,2015

Why care about CF response times?

• IBM have stated that z CPU speeds are going to stabilize as

Moore’s Law comes to an end. If CPUs are not getting faster,

you need to find your performance improvements elsewhere.

0

2

4

6

CPU Speeds

GHz

CF Resp Times G
H

z

M
ic

s

© Copyright Watson & Walker 2014,2015

Comparative performance
• Just to get some feel for the comparative cost and performance of

disk vs CF, we ran a job to read 4KB blocks from a sequential data

set, then ran same job reading 4KB blocks from CF list structure.

• Actual measurements, but not in a controlled lab environment

• Provided purely for illustration of the relative performance and

CPU cost of DASD I/O vs. CF requests

0

50000

100000

150000

200000

250000

Disk I/O Sync CF
Req

Rate/sec

Rate/sec

0

2

4

6

Disk I/O Sync CF Req

CPU/Req

CPU/Req

© Copyright Watson & Walker 2014,2015

Why care about CF response times?

• Short-running CF requests consume less resource (that
means less $) than longer requests:
– Subchannels are busy for the entire response time, so the shorter

the response time, the lower the utilization:

• You get more subchannels (to reduce subschannel utilization) by
adding more CF Link CHPIDs or maybe buying more CF links,
so by minimizing CF response times you minimize CF link
requirements.

– Long synchronous CF requests consume more z/OS CPU time than
short synchronous requests (because z/OS CPU consumption of a
synchronous request = service time of that request).

– Asynchronous CF requests consume more z/OS CPU time than
short synchronous requests. They also lower the z/OS capture ratio,
making chargeback more challenging.

– Long-running requests elongate transaction and batch job elapsed
time and cause more lock contention (which also costs more CPU
time).

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• What exactly IS a Coupling Thin Interrupt?

– Prior to Driver 15 (zBC12 and zEC12 GA2) the arrival of an

unsolicited signal on a Coupling Facility link did not generate an

interrupt.

• This meant that the users of Coupling Links (Coupling

Facilities and z/OS systems) needed some other

mechanism to detect the presence of something in the link

buffer that needed to be attended to.

CF z/OS Coupling Link

Link buffer

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• Driver 15 introduced the ability for the link hardware to
generate an interrupt when something arrives in the link
buffer.
– This ability can be enabled and disabled by the “operating system”

that owns the link buffer.

• Because the CF signals are simpler than other forms of I/O
(DASD I/O, for example) the interrupts associated with them
are less complex.

• Hence:
– Coupling Because they are for Coupling Links

– Thin Because they are “light weight” – they do not carry as
much information as I/O interrupts

– Interrupts Because they generate an interrupt.

• Note that there are also other types of “thin” interrupts – for
QDIO, for example.

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

This is what Coupling Thin Interrupts can do for YOU

Production environment, Customer 1

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

Or maybe this….

Test environment, Customer 2

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts
Or even this (service time for ISGLOCK and CPU time for GRS)

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• The Coupling Thin Interrupt capability can be exploited by

both Coupling Facility and by z/OS, but in different ways.

• Let’s look at z/OS first.

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• We need a little background information first….

• On z/OS, Coupling Thin Interrupts can change:

– How PR/SM dispatching works for a z/OS LPAR:

• On the z/OS end, Coupling Thin Interrupts can be used

regardless of whether z/OS is using shared or dedicated

engines.

– How XES becomes aware that he has some work to do.

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

Is LCP

Ready to

do Work?

Skip and

move to next

LCP

Is LCP

using < or

> Fair

Share?

Low priorty

High priorty

No

Yes

<

>

“Fair Share” is

based on

relative weight

Give engine to

highest priority

LCP

PR/SM Dispatching and CTI

The presence of an outstanding interrupt

for an LPAR makes PR/SM aware that

the LPAR is ready to do some work

Without Coupling Thin Interrupts, an

LPAR that has an outstanding CF signal

might appear that it has no work to do, so

it gets passed over

PR/SM

Dispatching

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

Benefit #1 (PR/SM / LPAR Level):

• If z/OS is using a shared engine and either has a low weight or

is not very busy (this example is a test z/OS in prod plex), the

existence of an outstanding interrupt can decrease the time that

the Logical CP has to wait to get dispatched again.

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

Now that we are dispatched, need to realize that there is a signal

waiting to get processed.

 Processing for asynch response or CF notification (Before CTI)

z/OS

User
Address

Space

XCF

Address
Space

Any
Address

Space

CSS

Subchannels

Global
Summary

Subchannel
Vectors

Dispatcher

If global summary
Loop:
 If local summary[i]

 Schedule SCN SRB[i]

Local

Summary

CF

CF

SCN SRB[i]

Loop:
 If subchannel vector[j]

 STCK(T2)
 If XCF Signal, call CE
 Else Schedule CE

Completion Exit SRB
Store results, free CB

Select user mode
 When exit: Call CE
 When ECB: Post

 When token: n/a

SCN = Subchannel Completion Notification
CE = User Completion Exit

© Copyright Watson & Walker 2014,2015

To ensure timely recognition of async

completion, Dispatcher has to check

GS bit frequently

Coupling Thin Interrupts

Processing for asynch response or CF notification (After

CTI)
z/OS

User
Address

Space

XCF

Address
Space

Any
Address

Space

CSS

Subchannels

Global
Summary

Subchannel
Vectors

Dispatcher

If global summary
Loop:
 If local summary[i]

 Schedule SCN SRB[i]

Local

Summary

CF

CF

SCN SRB[i]

Loop:
 If subchannel vector[j]

 STCK(T2)
 If XCF Signal, call CE
 Else Schedule CE

Completion Exit SRB
Store results, free CB

Select user mode
 When exit: Call CE
 When ECB: Post

 When token: n/a

SCN = Subchannel Completion Notification
CE = User Completion Exit

Thin Interrupt

© Copyright Watson & Walker 2014,2015

With Thin Interrupts,

Dispatcher doesn’t need to

check GS, but still does as

failsafe

Coupling Thin Interrupts

Benefit #2 (z/OS / XES Level):

• Because the arrival of a CF signal generates an interrupt, you
no longer need to wait for the dispatcher to check the Global
Summary bit.
– Reduces interval between when signal arrives from CF and when

XES gets called to process it.

– Delivers more consistent response times because interrupt will be
processed more or less immediately rather than having to wait a
variable amount of time for the dispatcher to get control and check
Global Summary bit

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

Benefit #2 (z/OS / XCF Level):

• This doesn’t only apply to the response to asynchronous

requests

• XCF system-to-system signaling observes shorter end-to-end

times

• Shared Message Queue exploiters (IMS and MQ) are more

responsive

SYSA SYSB

Send XCF Msg to SYSB
I have something for you

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• z/OS exploitation of Coupling Thin Interrupts is automatically
enabled as long as z/OS is running on the required hardware and
software level.

• You can display status using D XCF,C command:

• You can control it using FUNCTIONS parm in COUPLExx

• You can change it dynamically using SETXCF FUNCTIONS
command

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• Prerequisites – for z/OS exploitation of Coupling Thin
Interrupts:

• z/OS must be running on zEC12 GA2 or zBC12 GA1
– z/OS LPAR can be using shared or dedicated engines

– All CF link types are supported

• z/OS V2.1

• z/OS V1.13 with APARs OA38734, OA37186, OA38781,
OA42682

• z/OS V1.12 with APARs OA38734, OA37186, OA38781,
OA42682

• There are NO service or CF Level requirements for connected
CFs – can be any supported CF Level, running on any
supported CEC, connected by any supported link type including
ICP (microcode) links.

• Scope is single system – you can enable it on none, some, or all
systems in the sysplex.

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• Summary for the z/OS end of CTI:

– As long as you are on a CPC with Driver 15 or later, and

running z/OS 1.12 or later with the required fixes, z/OS will

AUTOMATICALLY use Coupling Thin Interrupts

– The profile of systems that are most likely to benefit are:

• Systems where asynch response times are a LOT higher

than synchronous response times.

• Systems where asynch response times are significantly

greater than other systems in the same sysplex.

• LPARs with shared engines and low weights.

• LPARs with large variances in asynch response time over

different times of day.

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• We said that both z/OS and CFs can exploit Coupling Thin

Interrupts, but also that the considerations are different for the

two.

• Why is CF different?

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• 1) z/OS systems have millions of things to do – processing CF
signals is just one of them – hence the old model where the
MVS Dispatcher would only check the Global Summary bit
every so often.

• CFs, on the other hand, ONLY process CF requests. To do
that as quickly as possible, Coupling Facility Control Code
basically spends its time either processing a request, or
looking in the link buffers for the next request.

• IF the CF LPAR is always dispatched (that is, it has a
dedicated engine), it will very quickly detect the pending
request in the link buffers. Therefore, generating an interrupt
would not provide any response time benefit in that situation.

• As a result, Coupling Thin Interrupts only make sense and can
only be enabled on CFs with shared engines.

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• 2) CFs role in life is to deliver the best response time it can – let’s
say 5 mics.

• For a CF using a shared engine, it knows that when it loses the
engine, it will probably be waiting THOUSANDS of mics before it is
dispatched again – meaning that requests that arrive during that
time will have to wait a LONG time until the CF LPAR is dispatched
again. In an attempt to avoid this delay, CFCC used to try to hold
on to the engine as long as possible:
– For a CF LPAR running with DYNDISP OFF, CFCC will never release the

engine until PR/SM takes it away.

– For a CF LPAR running with DYNDISP ON, CFCC will finish all its work,
then hang on for a while longer (hoping that some more work shows up)
then finally go to sleep and release the engine back to PR/SM.

• This aversion to releasing the engine was based on the
fact that there was no interrupt mechanism for CF signals.

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• So how does Coupling Thin Interrupts change things?

• 1) Because Coupling Thin Interrupts provide an interrupt

mechanism, requests to a CF that is not currently dispatched will

now be observed and processed much sooner.

12,500 12,500 12,500

6000

12,500 12,500 12,500 12,500 Prod(OFF)

Tst(ON)

12,500 9000 12,500 12,500 12,500 Prod(OFF)

Tst(THIN)
1000 1000 1000 1000 2000

2500

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• How enabling Thin Interrupts impacts response times

DYNDISP=ON DYNDISP=THIN

This CF already had

DYNDISP set to THIN

This CF started with

DYNDISP=ON

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

What else? Does it make the coffee?

2) Because CFCC knows that it will be able to react to newly arriving

requests much sooner when DYNDISP is set to THIN, CFCC places

the logical ICF PU in wait state much sooner when there are no

requests to process. As a result, the physical ICF is given back to

PR/SM and may then be used by another logical ICF PU.. This

converts CFCC from being a CPU hog into being a good neighbor (for

anyone sharing an engine with it).

(coffee maker is an optional feature – please submit an RPQ and

loosen up your checkbook…)

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

Requests

This shows the impact of different configuration options on the CF that is

being changed (Prod) and on the CF it is sharing the engine with (Test)

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

This illustrates a very important point about the impact of Coupling

Thin Interrupts on CFs – they don’t only impact the CF LPAR where

they are enabled, they ALSO impact any other CF LPARs that they

are sharing engines with.

It is natural when you make a change to monitor the thing you

changed – when investigating the impact of Coupling Thin Interrupts,

you also have to monitor OTHER sysplexes (which means a separate

set of RMF reports).

Implementation is easy, monitoring the impact is the hard part!

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• Whatever type of CEC is at the other end of the CF link is

irrelevant.

– Could be CEC that supports Coupling Thin Interrupts or one

that doesn’t – makes no difference.

• It is irrelevant whether Coupling Thin Interrupts are turned on

on the z/OS LPAR.

– The system that sends the signals has no role to play in

whether an interrupt is generated when that signal reaches the

target LPAR.

– Whether the hardware generates an interrupt is COMPLETELY

under the control of the “operating system” running in that

LPAR.

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• Prerequisites – for CF exploitation of Coupling Thin Interrupts:
– CF must be running on CPC with Driver 15 or later.

– Coupling Thin Interrupts work with any type of CF link – ISC, ICP,
PSIFB (1X/12X/IFB Mode/IFB3 Mode), ICA.

– CF LPAR must be using shared engines – DYNDISP command is
not accepted in CF LPARs with dedicated engines.

– Coupling Thin Interrupts must be explicitly turned on for that LPAR
using the DYNDISP THIN command.

• Unlike z/OS LPARs, Coupling Thin Interrupts are NOT
automatically enabled in CF LPARs.

– A Swiss bank account to hold all the awards and bonuses you will
get after implementing this.

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• Recommendations:

– For CFs that are using DYNDISP ON today, we recommend that
you switch to DYNDISP THIN.

– If your CFs are using DYNDISP OFF today, we recommend that you
at least try DYNDISP THIN (you can switch back and forth non-
disruptively).

– If your production CF has a dedicated engine AND runs at
extremely low utilizations (peak <10%), you MIGHT consider testing
it with a shared engine and DYNDISP THIN before the next time
you upgrade the CF CPC.

• You might find that you can get acceptable response times without
needing a dedicated engine.

• But you can only do this if at least one of your CFs is already in a
zEC12/zBC12.

• And changing your CF engine from dedicated to shared and back
requires the CF LPAR to be deactivated/reactivated, so is somewhat
disruptive

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

• References:

– Setting Up a Sysplex

– PR/SM Planning Guide (for EC12 or later)

– Excellent IBM White Paper 102400 – ‘Coupling Thin

Interrupts and Coupling Facility Performance in Shared

Processor Environments’ by Barbara Weiler

© Copyright Watson & Walker 2014,2015

https://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102400
https://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102400
https://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP102400

Modifyable Sync/Async Thresholds

• Coupling Thin Interrupts can deliver reduced CF response

times in certain situations.

– In many cases, they might be sufficient to turn unacceptable

response times into acceptable ones.

• However, there may still be situations (most likely in sysplexes

with a large number of CF requests) where some fine tuning

may deliver better overall average response times, or possibly

even some z/OS CPU savings.

– The SYNCASYNC function provides a mechanism to apply this

fine tuning…

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• z/OS 2.1 (and rolled back to z/OS 1.12 and 1.13) lets you

control the thresholds used by the XES heuristic algorithm.

This ability is called SYNCASYNC.

• To understand what this means and why you should be

interested, we will cover:

– Some background - What are sync and async requests?

What IS the "heuristic algorithm"?

– How to determine if this capability would be valuable to you.

– How to implement this new capability.

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

•

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• Because XES consumes z/OS CPU until the response to a
sync request is received back from the CF, a very-long-
running synchronous CF request can consume a lot of z/OS
CPU.

• On the other hand, because XES doesn't spin while an
asynchronous request is running, the z/OS cost of an
asynchronous request (in terms of the number of instructions
executed) is more or less fixed.

• For long-running requests,
asynch uses less z/OS CPU.

• For short response times, it
is more efficient to keep request
as synch.

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• When customers started implementing multi-site

sysplexes, the CF service time, and therefore the z/OS

CPU consumption, of synchronous requests started

increasing dramatically (roughly 10 mics per km.)....

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• To protect systems from excessive CPU consumption by long-
running synchronous requests, z/OS 1.2 introduced a
heuristic algorithm. The objective of the algorithm was to
handle CF requests as efficiently as possible from a z/OS
CPU consumption perspective.

• If the expected CF service time (based on a rolling average of
sync response times) for a request is less than the z/OS CPU
time required to handle an async request (the green line), the
request would be sent synchronously.
If the expected response time was
higher, the request would be sent
asynchronously.

• This was all automagical and you had
no control over it.

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• The elapsed time to process the 4 task switches
associated with an asynchronous request is related to the
CPU speed - a slower CPU will take more time to process
x instructions than a faster one.

• So, as CPUs got faster, the amount of time required to
complete the "fixed" number of instructions associated with
asynchronous requests got shorter and shorter and shorter.....

• The threshold used by the
heuristic algorithm is determined
by the elapsed time to perform
the task switches, so as the CPU
speed increased, the threshold
kept getting lower

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• If this were to continue, soon most requests would be processed

asynchronously. This is not good for overall performance, and

some CF exploiters don't like having their synchronous requests

converted to asynchronous ones.

• To protect from this situation, APAR OA21635 adjusted the

algorithm to set a minimum threshold of 26 mics - any request

expected to take longer would be converted to async, any

expected to take less would be left as synchronous.

• The threshold might still be higher on older or slower CECs. Use

the D XCF,C command to display the threshold for your system:
D XCF,C

 INTERVAL OPNOTIFY MAXMSG CLEANUP RETRY CLASSLEN

 165 168 2000 15 10 956

...

 SYNC/ASYNC CONVERSION THRESHOLD -SOURCE- DEFAULT

 SIMPLEX 26 SYSTEM IN USE

 DUPLEX 26 SYSTEM IN USE

 LOCK SIMPLEX 26 SETXCF IN USE

 LOCK DUPLEX 26 SYSTEM IN USE

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• Customers have various reasons for wanting control over the
synchronous/asynchronous threshold:
– If the threshold is just below your median synchronous service time, you could

increase the percent of requests being processed synchronously by increasing
the threshold by a small amount.

– The accounting of used z/OS CPU time is handled differently for a synchronous
CF request than for an asynchronous one. Having requests switching back and
forth between synchronous and asynchronous can make chargeback more
complex.

• High percentages of asynchronous requests impact capture ratio. In a measurement
where the only workload was driving CF requests, capture ratio was 98% for pure
sync workload vs. 63% for pure asynchronous.

– Changing CPU speed, either because of a technology change or a change in the
number of engines in the LPAR, can cause the threshold to change, meaning
that the balance between sync and async requests, and the overall average
response time, can change when you change the CPU or LPAR config.

– Especially for lock requests, a change from short synchronous response times to
longer, asynchronous, ones can impact certain workloads.

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• What to look for in an RMF report

Are some systems

getting a higher % of

Sync?

Is this a structure that you

care about?

Increasing the threshold on

system FPKA might result in

a higher % of sync requests

 STRUCTURE NAME = DB2P_LOCK1 TYPE = LOCK STATUS =

 # REQ -------------- REQUESTS -------------

 SYSTEM TOTAL # % OF -SERV TIME(MIC)-

 NAME AVG/SEC REQ ALL AVG STD_DEV

 FPKA 33966 SYNC 2K 0.1 26.3 928.1

 566.1 ASYNC 32K 20.3 70.9 988.0

 CHNGD 0 0.0 INCLUDED IN ASYNC

 SUPPR 0 0.0

 FPKB 123K SYNC 117K 74.7 21.9 247.2

 2050 ASYNC 5680 3.6 64.6 1474.6

 CHNGD 0 0.0 INCLUDED IN ASYNC

 SUPPR 0 0.0

 TOTAL 157K SYNC 119K 74.8 21.9 391.5

 2616 ASYNC 38K 23.9 69.9 1119.9

 CHNGD 0 0.0

 SUPPR 0 0.0

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• z/OS 2.1 (and rolled back to z/OS 1.12 and 1.13) provides new

COUPLExx keywords to let you override the thresholds if you wish.

• In the COUPLExx Parmlib member, there is a new statement:

– SYNCASYNC keyword(value) keyword(value)
COUPLE SYSPLEX(&SYSPLEX.)

 PCOUPLE(SYS1.&SYSPLEX..SYSPLEX.CDS01)

 ACOUPLE(SYS1.&SYSPLEX..SYSPLEX.CDS02)

 SYNCASYNC SIMPLEX(DEFAULT) DUPLEX(40)

D XCF,C

 INTERVAL OPNOTIFY MAXMSG CLEANUP RETRY CLASSLEN

 165 168 2000 15 10 956

 SSUM ACTION SSUM INTERVAL SSUM LIMIT WEIGHT MEMSTALLTIME

 ISOLATE 0 900 50 300

 CFSTRHANGTIME

 900

...

 SYNC/ASYNC CONVERSION THRESHOLD -SOURCE- DEFAULT

 SIMPLEX 26 PARMLIB IN USE

 DUPLEX 40 PARMLIB 26

 LOCK SIMPLEX 26 SYSTEM IN USE

 CK DUPLEX 26 SYSTEM IN USE

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• You can also change the thresholds dynamically using the

SETXCF MODIFY,SYNCASYNC,keyword=value command:

– Where “keyword” is one of the following:

• SIMPLEX - for simplex list and cache requests

• DUPLEX - for duplexed list and cache requests

• LOCKSIMPLEX - for simplex lock requests

• LOCKDUPLEX - for duplexed lock requests

– And “value” can be:

• Numeric value in range 1 to 10000 (microseconds)

• DEFAULT – to use the system determined threshold value

• Note that each system in the sysplex could potentially have

different thresholds, and the scope of the SETXCF

MODIFY,SYNCASYNC command is also a single system.

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• Before you change any thresholds, remember that the default
thresholds were designed to optimize z/OS CPU usage by CF requests.
– Reducing the thresholds will result in more requests being processed

asynchronously (and therefore getting longer response times). Impact on z/OS
CPU is difficult to predict (although such a change will definitely move reporting
of some of the z/OS CPU time from requestor address space to XCFAS).

• However, CPU speeds have improved considerably since the current minimum
threshold of 26 mics was established – on full speed z196 and zEC12, that threshold
might be significantly higher than the actual z/OS CPU cost of an async request…..

– Increasing the thresholds may result in some more z/OS CPU usage in return for
better overall average CF response times.

– Before you change the thresholds, suggest that you enable Coupling Thin
Interrupts in z/OS to see if that can reduce async response times to an
acceptable level.

• Remember that some requests (XCF, DB2 Secondary GBPs, for
example) are designed to be asynchronous requests and will never be
synchronous, regardless of the value of the thresholds.

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• Prerequisites:

– Hardware:

• Any System z CEC supported by z/OS 1.12 or later

• No dependencies on any particular CF Level or CF CEC type

– Software:

• z/OS 2.1 (in the base code)

• z/OS 1.13 + PTF UA69637

• z/OS 1.12 + PTF UA71120

© Copyright Watson & Walker 2014,2015

Modifyable Sync/Async Thresholds

• Powerful capability to fine tune performance of your CF
workloads
– Rolled back to z/OS 1.12

– Works with any CF Level supported by z/OS 1.12 or later

• Recommend to monitor SMF Type 113 records and see if
changing the threshold has any impact on Relative Nest
Intensity
– EVERYONE should have HIS turned on and be collecting Type 113

records all the time, irrespective of this new function. If you don't
have any other tool to process the Type 113 records, you can use
CP3KEXTR and zPCR.

• For most customers, probably not necessary to adjust the
thresholds

• Use with care and monitor RMF reports to understand impact

© Copyright Watson & Walker 2014,2015

Coupling Thin Interrupts

If you liked this session, here are some others you might like:

– 16813 - Coupling Technology Overview and Planning - What’s
the Right Stuff for Me? - Gary King

– 16831 - RMF and Coupling Facility Health – Brad Snyder

– 17154 - SMFPRMxx Parameters - Which can Help; Which can
Hurt – Cheryl Watson, Frank Kyne

– 16461 - The Cheryl and Frank zRoadshow – Cheryl Watson,
Frank Kyne

• Also, if you like SMF data (and who doesn’t??!!), please
see our new AND IMPROVED(!) SMF Reference
Summary at www.watsonwalker.com/references.html

© Copyright Watson & Walker 2014,2015

https://share.confex.com/share/124/webprogram/Session16813.html
https://share.confex.com/share/124/webprogram/Session16813.html
https://share.confex.com/share/124/webprogram/Session16813.html
https://share.confex.com/share/124/webprogram/Session16813.html
https://share.confex.com/share/124/webprogram/Session16813.html
https://share.confex.com/share/124/webprogram/Session16831.html
https://share.confex.com/share/124/webprogram/Session17154.html
https://share.confex.com/share/124/webprogram/Session17154.html
https://share.confex.com/share/124/webprogram/Session17154.html
https://share.confex.com/share/124/webprogram/Session17154.html
https://share.confex.com/share/124/webprogram/Session17154.html
https://share.confex.com/share/124/webprogram/Session17154.html
https://share.confex.com/share/124/webprogram/Session17154.html
https://share.confex.com/share/124/webprogram/Session16461.html
https://share.confex.com/share/124/webprogram/Session16461.html
https://share.confex.com/share/124/webprogram/Session16461.html
http://www.watsonwalker.com/references.html

Any questions?

Frank Kyne

Editor and Technical Consultant

Watson and Walker

© Copyright Watson & Walker 2014,2015

Thank you for coming

Frank Kyne

Editor and Technical Consultant

Watson and Walker

Please remember to complete an evaluation

Session number is 16644

© Copyright Watson & Walker 2014,2015

