
How Do You Do What You Do
When You're a z990 CPU?

2

z/OS

zSeries
z/Architecture
IBM®

Trademarks

3

Agenda

Introduction
Conceptual View of Instruction Processing
The Cache
Pipeline Architecture

�instruction overlap

Impediments to Instruction Overlap
�Address Generation Interlock
�Instruction Fetch Interlock
�Operand Store Compare
�Branches

Superscalar Grouping
�rules and exceptions

4

The Cache

An element in the hierarchy of system storage.
Managed by the processor, not observable to programs.

Cache
Not observable by

code

Auxiliary Storage
Managed by Channel Programs (Start Subchannel, etc.)

In
c
re

a
s

in
g

 C
a
p

a
c

ity
In

c
re

a
s

in
g

 S
p

e
e
d

Main Storage
Directly addressable by system and user code

This may have its own
internal structure

5

Cache Effects

Cache is to main storage as main storage is to the

backing store in the paging subsystem
�Therefore, many of the concepts we are familiar with from
"virtual storage" are applicable when thinking about cache.

The concepts of “thrashing”, “working set”, and
“locality of reference” that are normally applied to
Virtual Storage apply to the cache as well:

�where possible, address data sequentially rather than
randomly
�keep data referenced closely in time close in memory
�keep code compact, avoid branches

Cache is completely under control of the processor
�in a multiprogramming system there’s nothing you can do
to make its behavior deterministic.

6

Instruction Processing and the Cache

Auxiliary Storage
Accessed by Channel Programs (Start Subchannel, etc.)

D-Cache
Not observable by

code

Main Storage
Directly addressable by system and user code

Instructions come into Main Storage, in blocks
of 4K, from Auxiliary Storage as required

Instruction stream

Data for instruction operands, like instructions,
come into Main Storage, in blocks of 4K, from
Auxiliary Storage as required

Instructions are fetched from
the cache for execution

Storage references in
Instruction Processing

Instructions and data come into the
Cache from Main Storage as required

Load

Data are stored back into main storage

Changed pages are copied back to
Auxiliary Storage when Main Storage
is required for other purposes

Store

I-Cache
Not observable by

code

7

Conceptual View of Execution

Instructions are executed in the order they are seen.
Every instrucion completes before the following instruction
begins.

instruction instruction instruction instruction

time

Instructions take a varying amount of time.
Instructions have direct and immediate access to main
storage.

8

Individual instructions are really a sequence of
dependent activities, varying by instruction:

for example: A R1,D2(X2,B2)

for example: CLC D1(L,B1),D2(B2)

for example: UPT (Update Tree)

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand1
Address

Operand1
Fetch

Operand2
Address

Operand2
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Execute Instruction as an "internal subroutine" (millicode)

Pipeline View of Instructions

9

Overlapped Execution in a Pipeline

If each stage in the execution of an instruction is
implemented by distinct components then execution
can be overlapped.

time

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

10

Superscalar multiple instruction overlap

A Superscalar processor can process multiple instructions
simultaneously because it has multiple units for each stage of
the pipeline. But, the apparent order of execution is still
maintained.

time

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instructio
n Fetch

Instructio
n Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

11

Superscalar Instruction Pipeline

Schematic of superscalar, in-order execution, out-of-order
operand fetch instruction pipeline (based on z990).

Register
File

AGI bypass
buffer

ID ID

Instruction queue

AG AG
operand fetch

request To Cache

Operand
Buffer

From Cache

EX this unit can only
execute branches

Instruction flow
Operand data flow
Register value flow

EX EX

Register
File

Store
Buffer

12

Impediments to Instruction Overlap

Address Generation Interlock
� waiting for the results of a previous instruction to
compute an operand address

Instruction Fetch Interlock
� reloading instructions as a result of stores into the
instruction stream

Operand Store Compare
� waiting to refetch a recently modified operand

Branch Misprediction
� branching (or not branching) in a way other than the
processor has guessed.

Inhibition of Superscalar Grouping
� executing less than the optimal number of instructions
simultaneously due to inter-instruction dependencies

13

Address Generation Interlock

Occurs when Operand Addressing in one instruction
has to wait for the result of a previous instruction:

A R1,Stride

L R2,Vector(R1)

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode wait for result from previous Add

Operand
Address

Operand
Fetch

Execute
Putaway
Result

14

AGI Gap

The size of the “wait for result” gap depends on the
structure and complexity of the pipeline.

� The gap can be reduced in software by careful ordering of
the instructions.
� It can also be reduced in hardware by an engineering trick
called "AGI bypass".

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

wait for result
Operand
Address

Operand
Fetch

Execute
Putaway
Result

15

Address Generation Interlock (continued)

This sequence could be replaced, at little or no cost to
execution time with:

A R1,Stride

* Unrelated simple instructions

L R2,Vector(R1)

The number of

instructions to

insert might vary

by processor.

Note that this in not a superscalar example.

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

16

Updated register value is available after step 3 rather than 6.

agi bypass

buffer

ID

Instruction queue

AG

Operand

Buffer

Instruction flow

Operand data flow

Register vaue flow

EX

Register

File

1

2

4

5

6

3
No operand data

is fetched, but the
pipeline stage is
still required.

Execution logic is null,
but the pipeline stage is
still required.

Data flow for Load Address AGI bypass

17

Data flow for Load AGI bypass

Updated register value is available after step 4 rather than 6.

agi bypass

buffer

ID

Instruction queue

AG operand fetch

request

Operand

Buffer

From Cache

Instruction flow

Operand data flow

Register vaue flow

EX

Register

File

1

2
3

4

4

5

6

Execution logic is null,
but the pipeline stage is
still required.

18

Instruction Fetch Interlock

Occurs when an instruction is (or might be) modified by
a store in a previous instruction

LH R3,BranchTable(R2) S-type adcon

STH R3,BranchTarget

B *-* Modified Instruction

BranchTarget EQU *-2

Note that this is a unified cache example.

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

Instruction
Decode

Operand
Address

Operand
Fetch

Execute
Putaway
Result

Instruction
Fetch

(unmodified)

Instruction
Decode

Operand
Address

Reload instruction
because of store into

instruction stream

Instruction
Fetch

(modified)

Instruction
Decode

...............
.

Putaway
Result

19

Instruction Fetch Interlock: Notes

Reentrant code does not suffer from Instruction

Fetch Interlock

There are cases where stores into the immediate
instruction stream might not be recognized by the
processor:

�Access-Register mode
�Home-Space mode
�When stores are made to a real address using a different
effective address
�These are discussed in detail in Principles of Operation,

“5.13.1 Conceptual Sequence” at
publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/

BOOKS/DZ9ZR000/5.13.1

20

IFI, The Unified Cache View

1. Fetch instructions from the cache, possibly going to main storage in the first instance

2. Fetch operand from the cache, possibly delayed as cache is filled from main storage

3. Store result in the cache.

4. The next instruction to be executed has already been fetched (IF1) from the same

cache block as the previous store; this fetch is invalidated and must be redone (IF2)

LH R3,BranchTable(R2) S-type adcon

STH R3,BranchTarget

B *-*

Cache
Not observable by

code

IF ID OA OF Ex PR

IF ID OA OF Ex PR

IF1 ID1 OA Reload IF2 ID2 ... PR

1
1

1

2

3

4

21

The Split Cache

On zSeries processors, the Cache has an internal
hierarchy:

�Level-1 Cache (closest to the processor is the storage

hierarchy) and

�Level-2 Cache, between the Level-1 Cache and Main

Storage

On zSeries processors, the L-1 Cache is split
between an Instruction Cache (I-Cache) and a Data
Cache (D-Cache)
This structure allows caches that:

�are larger, supporting a larger working set

�have more opportunities for parallelism among processor

components

�are faster

22

The Cache, Decomposed

L2 Cache
Not observable by code

Auxiliary Storage

Managed by Channel Programs (Start Subchannel, etc.)

In
c
re

a
s
in

g
 C

a
p

a
c

ity
In

c
re

a
s
in

g
 S

p
e
e
d

Main Storage
Directly addressable by system and user code

I-Cache

Not observable
by code

D-Cache

Not observable
by code

I- and D-Cache
combined prior

to zSeries

23

The Split Cache View of IFI

1. Instruction fetch from I-Cache
(IF, IF, IF1)

2. Operand fetch (from D-Cache)
3. Store result in D-Cache
4. Push Result through to Level-2 Cache
5. Invalidate I-Cache in the same 256-byte

block

6. Reload I-Cache from L-2 Cache
7. Refetch potentially-changed instruction from I-

Cache (IF2)

Effect of Instruction Cache/Data Cache split

I-Cache
Read-only

Main Storage
Directly addressable by system and user code

IF ID OA OF Ex PR

IF ID OA OF Ex PR

IF1 ID1 OA Wait/Reload IF2 ID2 ... PR

D-Cache
Read/Write

3

1

1 1

5

7

2

Level-2 Cache
Controlled by the Processor

6

4

24

Consider the following macro expansion
9 load eploc=(R2),loadpt=(R3)

12+ CNOP 0,4

4110 xxxx xxxxx 13+ LA 1,*+8 PICK UP ADDR OF PARM LIST

47F0 xxxx xxxxx 14+ B *+20 BRANCH AROUND CONSTANTS

00000000 15+ DC A(0) EPLOC OR DE PARAMETER

00000000 16+ DC AL4(0) DCB ADDRESS PARAMETER

00 17+ DC AL1(0) PARAMETER LIST FORMAT NUMBER

00 18+ DC AL1(0) RESERVED

01 19+ DC B'00000001'

00 20+ DC B'00000000' OPTIONS

00000000 21+ DC A(0) EXPLICIT LOAD OR LOADPT

4100 2000 00000 22+ LA 0,0(0,R2) PICKUP EPLOC OR DE PARM

5000 1000 00000 23+ ST 0,0(0,1) STORE IN SUPV PARM LIST

4100 3000 00000 24+ LA 0,0(0,R3) PICKUP LOADPT ADDRESS

5000 100C 0000C 25+ ST 0,12(0,1) STORE LOADPT ADDRESS

41F0 0009 00009 26+ LA 15,9 LOAD EXTENDED SVC ROUTING

CODE

0A7A 27+ SVC 122 ISSUE EXTENDED SVC

IFI, Another Example

25

IFI, Another Example (continued)

LA 0,0(0,2)

ST 0,0(0,1)

LA 0,0(0,3)

ST 0,12(0,1)

LA 15,9

Note that the 2 Store instructions do not modify
instructions but, because they store into the nearby
stream, subsequent instructions must be reloaded.

�The granularity for detecting potential instruction fetch
interlock is the cache line (256 bytes).

IF ID PR

IF1 ID1 Wait/Reload IF2 ID2 PR

IF ID OA OF Ex PR

IF ID OA OF Ex PR

IF1 ID1 Wait/Reload IF2 ID2 PR

26

Operand Store Compare (OSC)

IF ID OA1
OF1/
OA2

 OF2 Ex PR

IF ID
wait

for OA
OA

wait for MVC
result

OF Ex PR

Occurs when an instruction requires an operand from storage
that is unavailable because it will be modified by a previous
instruction

�called Operand Store Compare because it often happens when
testing a recently derived result
�The granularity of checking for an interlock is a doubleword
�There may also be an additional delay until the operand value has
"settled down".
MVC WorkArea(8),Uservar

CLI WorkArea+7,C' '

MVC WorkArea(8),Uservar

CLI Uservar+7,C' '

IF ID OA1
OF1/
OA2

 OF2 Ex PR

IF ID
wait

for OA
OA OF Ex PR

27

Branches and the Branch History Table

In order to keep the pipeline supplied with instructions,
the processor must "guess" the next instruction after a
branch.

�The processor maintains a branch history table (BHT) of
taken branches. Branches not taken do not take up space in
the BHT.
�If there is no BHT entry, the processor initially assumes the
branch is not taken (except for BC 15, BCT, BXLE).

�A mispredicted branch causes a partial flush of the pipeline.

TM Flg,Bad

BZ OK

* error path

OK L R1,...

IF ID OA Ex PR

IF ID

IF ID OA OF Ex PR

IF ID OA OF Ex PR

(This instruction is not executed)OFOA Ex

OF

28

Superscalar Grouping Rules

The z990 has 3 execution units and is capable of
executing up to 3 instructions simultaneously.
A sequence of up to 3 instructions can be selected for
execution subject to the following basic rules
(exceptions to follow):

�The first execution unit can only execute branch instructions
and branch instructions can only be executed by this unit.
�Multi-cycle (and some single-cycle) instruction must execute
alone as a group of one instruction
�Only one store instruction is allowed per group
�An instruction which references a register cannot be grouped
with a preceding instruction that sets the register.

29

Superscalar Grouping Pipeline

Register

File

agi bypass

buffer

ID ID

Instruction queue

AG AG
operand fetch

request
To Cache

Operand

Buffer

From Cache

EX* EX
EX

Another view of the pipeline

This unit can only
execute branch
instructions and
they can only
execute in this unit

Execution of the third unit is
staggered so that it can
sometimes take as input an
output of the second unit.

Register

File

Register

File

Register

File

Instruction flow

Operand data flow

Register vaue flow

30

Superscalar Grouping Exceptions

Clever engineering tricks allow some grouping
otherwise prohibited by the basic rules.

�Operand Forwarding: Some instructions1 can "forward" a
register they update to some other instructions2 and they can
be grouped. But, an instruction that sets only the low 32 bits
cannot forward to a 64-bit instruction.
�Condition Code Forwarding: Some instructions which set a
register and the condition code and "forward" the CC setting to
LTR which then sets the CC based on how it was set by the
previous instruction.
�LTR Special: LTR of a register into itself is not considered to
set that register and can be grouped with a following
instruction that references the register.

*1 e.g. L, LR, LTR, LG, LGR, LGTR, LA, LARL

*2 e.g. A, AR, LPR, LCR, S, SR, AG, AGR, LPGR, LCGR, SG, SGR

31

Code Reordering Example

Original Code Sequence

7 instruction groups and 10 cycles AGI delay
AGI seq instruction text | seq instruction text

01 LLGT @04,XFORNP31 |

<4> 02 L @04,FW(,@04) | 03 ST @04,XFORS

04 LG @05,TOPPTR |

<2> 05 LG @09,RTTOP(,@05) |

<2> 06 ST @04,RSISIZE(,@09) | 07 SLR @02,@02

08 ST @02,RSIPREV(,@09) | 09 LG @02,RDIPTR64

<2> 10 LH @08,RDITYPE(,@02) |

Reordered Code Sequence
5 instruction groups and 6 cycles AGI delay
AGI seq instruction text | seq instruction text

01 LLGT @04,XFORNP31 | 04 LG @05,TOPPTR

<2> 05 LG @09,RTTOP(,@05) | 07 SLR @02,@02

<2> 02 L @04,FW(,@04) | 06 ST @04,RSISIZE(,@09)

08 ST @02,RSIPREV(,@09) | 09 LG @02,RDIPTR64

<2> 03 ST @04,XFORS | 10 LH @08,RDITYPE(,@02)

