
DOUBLE ISSUE!

This is a spezial reprint of our September/October,
1992 issue. In 1993 we’llbe publishing a double-sized

issue every other month, so this particular issue is more

representative of the longer, fact-filled issues you’ll be

seeing then.

Over thirteen hundred firms, in over fifty countries,

now take the TUNZNG Let&r. The reader comments on

the back page (and the 90?t0 renewal rate) reflect their

enthusiasm. They use it to increase performance, to re-

duce costs, and to provide valuable internal education and

documentation.

All of our back issues are still available, and we

highly recommend buying the ones that are of interest to

your installation. Becasue we don’t want to reprint the

basics of a subject that may have taken many pages to

explain, we instead make reference to the past month and

page when that past material would be helpful. The back

issues are always kept current by the UPDATE sheets we

send from time to time. They contain corrections or

additional material and are to be stored with the original.

Please read and use this issue. Make as many copies

as your location needs (our policy with all issues). We

hope you’ll agree that this is a valuable and very practical

newsletter which should pay for itself many times over.

This issue is a continuation of the August 92 issue

covering Application Tuning from the viewpoint of reduc-

ing 1/0. If you have it available, please read the section

on application tuning in the August issue, especially “Get-

ting Started and “MVS Measurements: Batch Jobs.” The

issue included techniques for tuning batch applications,

design considerations, measurements of batch applications,

use of sort exits, and methods to reduce 1/0 (including

blocksizes, buffers, tape mounts, random versus sequential,

fixed vs variable, improving VSAM, and use of VIO).

Most of my recommendations apply to CICS appli-

cations as well as batch applications. Next month’s issue

will be devoted to tuning CICS from an MVS point of

IN THIS ISSUE

FOCUS: BATCH APPLICATION TUNING
PART II

Reducing CPU 2
Reducing Virtual Storage 7
Reducing Elapsed Time 8
Using Batch LSR 9
Using Hiperbatch 12
Miscellaneous 14

MVS MEASUREMENTS
Enqueue Analysis 15

MVS OVERVIEW
VLF Overview 17
LLA Overview 19

TUNING TIPS
Tuning Catalog & VLF 21
Tuning TSO & VLF 24
Tuning LLA 25

IN BRIEF
RMF APAR 26
SRM APAR 26
PR/SM Overhead 27

MVS/ESA SP 4.3 ENHANCEMENTS
SMF Enhancements 29
RMF Enhancements 30

Q&A
Limit on Buffers 31
Track vs Cylinder Allocation 31
Fixed Storage Problems 32

PRODUCT HIGHLIGHT:
STROBE 34
VSAM 1/0 plus 35
PMO & Quick-Fetch 35

FEEDBACK
Fixed DP for IMS 35
SRM APAR Describes STCS 35

@ 1992 Watson & Walker, Inc. ● 800-553-4562
1

CtleylWatsonk
TUNING Letter September/October 1992

view and will of course point out which of the techniques

mentioned in the August issue and this issue also apply to

CICS.

If you’re interested in reducing 1/0 by using data-in-

memory (DIM) applications in MVS/ESA, you’ll probably

be interested in IBM manual “GG24-3698 - MVS/ESA

and Data in Memory Performance Studies”. It’s a 300+

page “redbook’ on benchmarks and tests run by IBM

using a variety of DIM applications.

I FOCUS: APPLICATION I
TUNING

INTRODUCTION

If you haven’t read the August 92 issue, you should

go back and read the GETTING STARTED section on

page 2 and the MVS MEASUREMENTS: BATCH JOBS

on page 16. They provide a method for approaching

tuning of applications and techniques for measuring them.

The measurement section should be reviewed because

it’s the basis for where you want to start tuning. If a job

is primarily CPU-bound, then tune the CPU; if it’s I/O-

bound, then tune the 1/0.

Howard Glastetter from the State of Washington

reminded me that I should have mentioned Top Twenty

progmms, as well as Top Twenty jobs. In last month’s

issue I suggested that you summarize data by jobs, then

sort in descending resource usage. You should also per-
form the same step, but summarize on program instead of

job. That is, find all the step termination records (type 30,

subt~ 4), sort by program name, then accumulate re-

sources (CPU time, EXCPS, etc.) by program name. Now

sort in descending sequence by resource (CPU or EXCPS)

and print the top twenty (or forty).

You may find frequently used programs, such as sorts

or IEBGENERs, that don’t show up individually, but do

show up as large resource users when you combine multi-

ple executions. These are certainly programs that you

want to spend some time tuning. Often, you’ll find these

are vendor programs and you can contact the vendor for

techniques in tuning their product.

2
@ 1992 Watson &

REDUCING CPU

If CPU usage is a major component of the elapsed

time (or large enough to warrant the effort), then you can
consider some of the following recommendations to re-

duce the CPU. In almost all cases, reduction of the CPU

time will reduce the charge back for a job and the

elapsed time of a job.

To find the jobs and programs consuming the most

CPU time, accumulate all seven CPU measures from the

SMF type 30 records for jobs or programs: TCB time,

SRB time, initiator TCB, initiator SRB, hiperspace time,

region control task time, and I/O interrupt time. Then

produce a “top twenty” list of the largest CPU users and

concentrate on them to reduce total CPU time.

REDUCE THE 1/0

Last month’s issue and several sections of this issue

deal with reducing the numbr of 1/0s issued by a job.

Reducing physical 1/0s will almost always reduce the

CPU time of a job. The only exception would be the

replacement of I/Os by use of some of the ESA features,

such as hiperbatch or Batch LSR (or any other facility

that uses hiperspaces instead of traditional 1/0s).

USE A PROGRAM ANALYZER

A program analyzer is the easiest and best way to

determine where the inefficiencies of a program are.

They can show where the majority of the CPU time is

spent. Often it’s concentrated in just a few lines of code.

The analyzers typically show you what address locations

are responsible for the most CPU time and where the

program is being delayed most (e.g. a dataset read). You

can then work to reduce that area of delay.

While you might consider using these products after

an application is in production, I think their most valu-

able use is during initial coding and testing. If you can

find some poor-performing areas, this is the ideal time to

modify the program ! You can find inefficient data stor-

age (constant conversion between packed and binary

fields), poor table handling techniques (old index tech-

niques), inefficient loops, etc. through these analyzers.

Clean up the code before it goes into production and it

will save you a lot of grief!

During production turnover reviews, you could re-

quire that application developers describe the sections of

code that account for most of the CPU time and what

steps were taken to reduce that CPU usage. If this re-

Walker, Inc. ● 800-553-4562

Ctieyl Watson k
TLIN/NG Letter September/October 1992

quirement is generally enforced then developers will learn

to use application tuning tools on a regulm basis.

A commonly used product is STROBE from Prog-

ramart. See the Product Highlight later in this issue.

Several online MVS monitors, such as TMON/MVS from

Landmark Corporation and Omegamon from Candle Cor-

poration, also provide a similar analysis. Whichever

product you choose, make sure the application program-

mers find it easy to use. Their use is the key to a suc-

cessful implementation. See the PRODUCT HIGHLIGHT

on STROBE for samples of reports available from this

type of monitor.

I’ve been able to reduce CPU time by 30% or more

by identifying poorly coded routines and replacing them

with efficiently coded routines.

USE EFFICIENT CODING TECHNIQUES

The following coding techniques apply specifically to

VS COBOL II, but many of the recommendations apply to

earlier versions of COBOL and other languages as well.

Be sure to check the Application Programming Guide

when you go to a new release (VS COBOL II manual for

Releases 3.0 to 3.2 is SC26-4045). This manual contains

several recommendations for improving the performance

of your COBOL programs.

❑ REDUCE CONVERSION OF DATA AREAS

Minimize the number of times fields are converted

from one format to another and minimize the compar-

ing of ilelds of two different formats. During the

design stage decide how fields will be stored and keep

their handling consistent. In general, calculations are

more efficient when done in binary fields but printing

numeric fields is best when the field is packed. If a

field will be used in calculations and also reported,

define it as a packed field. If it will only be used in

calculations and never printed, define it as a binary

field. When defining binary fields in COBOL, define

them with a sign and an odd number of digits (e.g.

PIC S9(5) COMP-4). Keep binary fields to less than

15 digits or a routine will need to be called to manip-

ulate them. Packed fields (COMP-3) are also more

efficient if less than 15 digits.

•l AVOID DESTRUCTIVE MOVES

Destructive moves are those where a field is initialized
by initializing the first byte to a blank or zero and

then moving the field to itself. In COBOL, this might

be:

•1

01 FULL-FIELD.

02 CLEAR-IT PIC X.

02 REST-OF-FIELD PIC X(99).

...

MOVE ‘Z’ TO CLEAR-IT.

MOVE FULL-FIELD TO REST-OF-FIELD.

This type of move is very, very inefficient (and yet it

can be found in many programs). A better method is

to define a constant field the same size as the origi-

nal field and move the entire field at once. If a field

will never be modified, initialize it with a VALUE

statement and you can avoid clearing it.

REDUCE INDEXING REFERENCES

Referencing indexed or subscripted fields takes more

CPU than referencing non-indexed fields. Reduce

the indexed references whenever possible. Leek at

the following example

01 STATE-TABLE.

02 STATE-ENTRY OCCURS 50 TIMES.

04 STATE-CODE PIC XX.

04 STATE-NAME PIC X(25).

04 STATE-POPULATION PIC 9(5)
ZONED-DECIMAL.

04 STATE-FLOWER PIC X(20).

04 STATE-BIRD PIC X(20).

04 STATE-GOVERNOR PIC X(30).

01 ST-HOLD.

02 ST-CODE PIC XX.

02 ST-NAME PIC X(25).

02 etc.

PERFORM SEARCHIT VARYING ST-NDX

FROM 1 TO 50.

IF FOUNDIT

MOVE STATE-NAME (ST-NDX) TO

ST-NAME.

MOVE STATE-POPULATION (ST-NDX) TO ..

... .

Better:

PERFORM SEARCHIT VARYING ST-NDX

FROM 1 TO 50.

IF FOUNDIT

MOVE STATE-ENTRY (ST-NDX) TO

ST-HOLD.

MOVE ST-NAME TO ...

MOVE ST-POPULATION TO ...

While this is a simplification of the code, I hope you

can see the intent. The second example only used

the subscript once to move the entry out of the table,

Q
(3 1992 Watson & Walker, Inc. ● 800-553-4562

Q

Cheryl Watson k
TUNING Letter September/October 1992

❑

4

and subsequent references then didn’t require a sub-

script. If you’re going to make multiple references

using indexes or subscripts, it may take less CPU time

to move the entire entry out of the indexed table area

first.

USE EFFICIENT INDEXING TECHNIQUES

Table lookups often account for a large portion of

CPU time in a program. Even if you don’t have a

program analyzer, you should try to evaluate the pro-

cessing for each table in a program. You’ll often find

very inefficient techniques that can be improved.

You should always use indexes instead of subscripts

when possible. Indexes are associated with a table

and therefore are relative to the table location. Index-

es take less CPU time than subscripts. A table could

be specified in one of the following two ways:

01 TABLE1 .

05 TABLE-SEC OCCURS 100 TIMES

INDEXED BY ID1 .

10 FLD1 PIC X.

10 FLD2 PIC X(10).

10 etc.

Worse:

01 TABLE1.

05 IDI PIC S9(3) COMP-4.

05 TABLE-SEC OCCURS 100 TIMES.

10 FLD1 PIC X.

10 FLD2 PIC X(10).

10 etc.

PERFORM SEARCH-IT VARYING ID 1 FROM 1

BY 1 UNTIL END-IT.

In these examples. the first table would produce more

efficient code because ID 1 is defined as an index

rather than a subscript. Indexing also allows a more

efficient use of the SEARCH verb.

When you design a system, consider which fields will

be used for subscripts into tables. The best format for

subscripts is binary, signed fields. A binary field with

9 digits is good, but less than 4 is even better. When

using a table with OCCURS DEPENDING ON logic,

ensure that the object of the OCCURS DEPENDING

ON is a binary, signed, odd-digit field (e.g. PIC S999

COMP-4). Continual reference to variable-length

fields is expensive, so move them to a fixed length

area as soon as possible in the processing.

@ 1992 Watson

•1

Whenever possible, use direct indexing instead of

table lookups. For example. in a payroll system that
must do a lot of state table lookups, assign a number

to each state, keep the state number in binary and use

it to go directly to the corresponding state entry

instead of keeping the two-character state code and

continually doing state-lookups.

USE EFFICIENT FILE TECHNIQUES

When accessing variable-length blocked sequential

files (QSAM or SAM) for output, use the APPLY

WRITE-ONLY clause in the File Definition. When

this phrase is specified, the buffer is truncated and

written only when the space available in the buffer is

smaller than the size of the next record. If not speci-

fied, the buffer is truncated when the space left is

less than the maximum record size (which causes

shorter blocks, more 1/0s and more disk or tape

space). Since use of the clause reduces calls to data

management services, it also reduces CPU time. See

the AWO compile option later.

Create alternate VSAM indexes with IDCAMS in-

stead of using the AIXBLD run-time option.

CONSIDER OPTIONS

Often, there are multiple methods to accomplish the

same result. Try both techniques and evaluate which

techniques produces the most efficient code. As an

example, some COBOL programs use the DISPLAY verb

to produce a summary report while others use the

WRITE verb. The WRITE is more efficient because you

can use QSAM buffering to improve the performance of

the file (DISPLAY uses unbuffered QSAM).

CONSIDER DYNAMIC CALLS VS

RESIDENT

Dynamic linkage to a program (loading it in during

execution) provides a great deal of flexibility for testing

and production. These routines can be easily changed,

recompiled, and then automatically used the next time

they”re referenced. Dynamically linked programs are
loaded the first time they’re called, however, and take

CPU time during the load. If you link to a dynamic rou-

tine multiple times during the execution, the logic should

be changed to include it in a composite linkedit. The

“load” is then done once during linkedit time instead of

daily during each execution. Moving the load to linkedit

time rather than execution is a very minor CPU reduction

if the call occurs once in the program, but can be signifi-

cant if there are many calls and the program is reloaded

each time.

& Walker, Inc. ● 800-553-4562

Cheyl Watson k
TUNING Letter September/October 1992

Dynamic calls improve ease of maintenance but in-

crease CPU time during execution. One exception to this
is a routine that is seldom used. For example, you might

produce a report only when errors occur (perhaps one day

out of twenty). In this case, it might make more sense to

keep the error report program dynamically called. If it

were linked together with the other routines, it would

increase the size of the load module of the main program

while providing no benefit (except once every twenty

times).

Does this mean you should ALWAYS avoid dynamic

calls. No way! Use them to improve maintainability, but
if you need to reduce CPU time during execution, it’s one

of the simple methods to do it.

ONLY DO A JOB ONCE

During the design phase of an application, determine

where certain steps, such as data validation, will occur and

then only perform the function once. In all other pro-

grams. assume that the function has been completed be-

fore. I once looked at a payroll system that had six differ-

ent programs validating the state code by doing a table

lookup. This should have been done in only the first

program, not in all succeeding programs!

The same type of logic applies for validation of nu-

meric data. I’ve seen programs that might be 10th or 1lth

into an application, executing code that looks like: “IF

FLDA NUMERIC THEN ADD FLDS ...”. This code is

often introduced not in the design phase, but during the

testing phase when the programmer encounters some

invalid data. In order to avoid abending, the programmer

adds these validation steps during testing (and never re-

moves them!).

Place validation processing at the first time a field

enters the application and then assume the field is correct

from that point on.

CONSIDER TEST VS PRODUCTION
TECHNIQUES

In all languages, it’s best to remove testing logic or

facilities prior to production. In most every case, these

testing techniques take more CPU time during execution

and take up more space in the program. For example, the

COBOL “READY TRACE”, “EXHIBIT”, and

“DISPLAY” verbs and use of the TEST compile option

occupy space in the program (thus increasing the working

set size) and take more CPU time in order to bypass them

during a production run. It’s much better to remove them

completely before going into production.

Optimization should always be used before going

into production, but should seldom be used in test. Opti-

mizing a program talces more CPU time during the com-

pilation, but produces more efficient code. For example,

in COBOL II, you should use a parameter of ‘TEST’

during the testing phase (this allows use of the TEST

facility), but you should use ‘OPTIMIZE’ during the

final stages of testing and production. OPTIMIZE nor-

mally produces more efficient code (such as putting

PERFORMed routines inline).

Remove test Fdes instead of dummying them before

going into production. For example, several program-

mers may create test files or reports during the testing

phase, then turn them off by “dummying” the files before

production (changing the DD statement to “DD DUM-

MY”). This just wastes CPU time. Remove all code

that references the fdes before going into production.

There’s a fine line in determining when you should

change to production mode. Most sites don’t want to

recompile just before production without testing, so you

want to change the parameters just before the “final” test.

Knowing when the “final” test is, is a little tricky! You

should consider a pre-production run where performance

and service level testing of the code and fdes can be

performed before production acceptance.

DESIGN FOR SORTING

During the design phase of an application, consider

the possible sort uses. For example, a contiguous sort

key is the most efficient. If the record layout provides

the most common key fields in a contiguous set of fields,

the sorts will be more efficient and take less CPU time.

Also, design the fields so a minimal size field can be

used for a sort key. In our state example, for instance, if

you carry both the state name and the state code, sort on

the state code since it’s shorter.

Also, avoid sorting on similar fields. I’ve seen sev-

eral programs where multiple sort keys are used where

one will do. For example, in a payroll application, sort

on social-security number or name, but not both.

(You’re probably thinking that I make these things up,

but I’m not. The worst case I saw had a fde sorted on

seven fields (six of which were imbedded in the

seventh!) It’s really not unusual to fmd these instances,

so look for them and eliminate them.

CHECK WITH VENDOR

If you don’t have the source of the code, ask the

vendor for ways to reduce CPU time in the product.
They often have recommendations for sites that need to

reduce the CPU time.

@ 1992 Watson & Walker, Inc. ● 800-553-4562
5

Cheyl Watson k
‘TUNINGLetter September/October 1992

USE BEST COMPILE OPTIONS

Consider the following options for compilation time.

You might put some in the standard COBOL proc or

simply encourage their use. Compile options can be

added in the JCL:

//STEP1 EXEC PGM=IGYCRCTL,

II PARM=’LIST,OBJECT,otherparms’

Compile option~

AWO This forces APPLY WRITE-ONLY for all appli-

cable files. See the prior discussion on APPLY

WRITE-ONLY, This should always be included

since the default is NOAWO.

DYNAM/NODYNAM See the previous discussion on

dynamic calls. DYNAM takes less time during

compilation, is easier for maintenance, and elimi-

nates multiple composite linkedits. It also takes

slightly more CPU time during program execu-

tion. For the majority of jobs, use DYNAM, but

if you need to reduce the CPU time on a job that

calls many routines, then use NODYNAM. De-

fault is NODYNAM.

FASTSRT Indicates that COBOL should allow the sort

utility to perform all 1/0s. NOFASTSRT (the

default) will cause the sort to call COBOL for

every record.

NUMPROC(PFD) This option bypasses checking of a

vahd sign for COMP-3 and DISPLAY signed

numeric data and will therefore take less CPU

time. If the data is coming from an external

source, you may want to use

NUMPROC(NOPFD) or NUMPROC(MIG) which

will add extra code to validate the sign.

NUMPROC(NOPFD) is the default.

OPTIMIZE This will produce mo~ efficient code for

RENT

6

execution, but will take more CPU time and

elapsed time for the compilation. Use OPTI-

MIZE before going to production, but

NOOPTIMIZE for initial testing. See the earlier

discussion on OPTIMIZE. NOOPTIMIZE is the

default.

This option creates a reentrant program that can

be loaded above the 16Mb line. This takes slight-
ly more CPU during execution to ensure that the

progmm is reentrant, but saves virtual storage

space below the line. That space can then be

used for other features, such as buffers that can

reduce CPU time. RENT forces RESIDENT (see be-

low). NORENT is the default.

RESIDENT This option will actually take more CPU

time during execution since the COBOL subrou-

tines need to be loaded at during the job’s exe-

cution. Use of NORESIDENT, however, elimi-

nates the possibility of running on CICS, running

above the 16Mb line, dynamic calls, using the

TEST compiler option, and sharing the library.

NORESIDENT also requhes all pmgrarns to be

linkedited if there are any updates to COBOL

subroutines. You may consider use of

NORESIDENT for a CPU-bound job that must

be reduced. Just be aware of the restrictions.

NORESIDENT is the default.

NOTEST TEST allows use of the debug tool, but

generates a lot of additional code. Therefore,

use NOTEST unless the programmer expects to

use the debug tool. NOTEST is the default.

TRUNC(OPT) This option eliminates the addhion of

extra code to truncate receiving fields of arith-

metic operations. TRUNC(BIN) and

TRUNC(STD) genemte code to truncate fields to

correspond to the PICTtJRE clause. Refer to the

Application Programming Guide for a fuller

discussion of this option.

In summary, you might consider using the following

options during initial testing:
LIST,OBJECT,AWO,DYNAM,FASTSRT,RESIDENT,TEST

Then use the following for prediction

LIST,OBJECT,AWO,FASTSRT,OPTIMIZEJtENT

If you REALLY need to reduce CPU, then override with

the following parameters (the NODYNAM may require

different linkedit procedures and NUMPROC & TRUNC

need to be thoroughly retested!):

NODYNAM,NUMPROC(PFD),NORESIDENT,’IRUNC(OW

CHARGE BACK ISSUES

Any reduction of CPU time will likely change your

charges for the execution. Simply be aware of this fact.
If these are real dollars, your tuning could reduce your

revenue.

@ 1992 Watson & Walker, Inc. ● 800-553-4562

Cbyl Watson k
TUNING Letter September/October 1992

REDUCING VIRTUAL
STORAGE

If you need to Educe the amount of virtual storage

used by a program (either because the region size is a

limiting factor or to reduce the working set size), consider

the following options.

USE DYNAMIC ROUTINES

Dynamically called routines are only brought in when

a program needs them. Infrequently used routines are

good candidates for dynamically called routines. They

will, however, take more CPU time for load during execu-

tion. But if several routines are used at different times

during processing, you can reduce the composite module

size and overlap them by loading one, deleting it, and

loading the next one. Freeing up region size could also

allow you to provide more buffers (as discussed in the

August issue) and improve the 1/0 processing.

USE LPA

If any of the programs are reentrant, you can consider

the use of the link pack area, LPA. LPA modules are

loaded into virtual storage at IPL and reside there for the

duration of the IPL. Any pages that aren’t referenced

reside on the PLPA page data set. You should only put

high used modules here and they should be linked to

reside above the 16Mb line if at all possible.

The benefits are outstanding! Not only do you save

the 1/0 and CPU time to load the module into storage, but

you reduce the virtual storage of the job. The job simply

references the LPA version of the program and doesn’t

need to load the module into the job’s address space. So

you end up with a smaller virtual storage requirement

which produces a smaller working set and probably less

paging.

This is applicable to many modules that me used by

several jobs, such as SAS modules, any TSO ISPF mod-

ules, TSO application modules, reentrant sort routines, and

many others.

REDUCE THE 1/0 STORAGE

Several of the techniques mentioned in the August
issue to improve 1/0 processing take more virtuat storage.

These include use of larger blocksizes and buffers. If you

need to reduce the virtual storage requirements, consider

reducing the blocksize and buffers. Only do this for

small, low-activity files, however or you’ll end up increas-

ing the CPU time and elapsed time in order to free up

some virtual storage.

REMOVE TESTING FACILITIES

Most of the testing facilities mentioned in the RE-

DUCING CPU section take virtual storage. If you elimi-

nate them, you’ll also reduce the working set size of the

job.

BENEFITS & COSTS

Reduction of the working set size itself may have no

benefit on a job other than the reduction of elapsed time.
This occurs because the program might use fewer paging

operations to perform the same amount of work. If

virtual storage is reduced by eliminating unused features,

such as test facilities, you’ll probably also see a reduction

in CPU time. If it’s reduced by eliminating I/O enhance-

ments such as large blocksizes or buffers or by loading

programs dynamically, the CPU time may increase and

the elapsed time might increase. You’ll have to track all

of the measures to determine the effect.

The primary benefit of reduced elapsed time is a

higher probability of meeting service level objectives for

batch jobs. It maybe worth increased CPU and I/O

costs in order to meet service level objectives.

CHARGE BACK ISSUES

As indicated in the prior paragraphs, reducing the

virtual storage may result in a change of CPU time,

EXCPS, and elapsed time. It’s not always predictable.

Look at the sections for reducing CPU and I/O for the

charge back considerations. Since charge back may be

based on meeting service level objectives, you stand the

chance of hitting the objectives mom frequently when

you’ve reduced elapsed time.

I 1

I From Dave Barry, my fizvorite columnist:

I
“BUG - a cute little humorous term used to explain

why the computer had your shipping department send

150 highly sophisticated jet-jighter servo motors,

worth over $26,000 apiece, to fishermen in the Ryuku

Islands, who are using them as anchors. ”

@ 1992 Watson & Walker, Inc. * 800-553-4562
7

Cheyl W’at30n k
TUNING Letter September/October 1992

REDUCING ELAPSED TIME

In order to understand how to reduce the elapsed time

of a job, you need to know where most of the time is

spent. Look at the August 92 issue on page 20 for a

technique to determine a breakout of elapsed time from

SMF data. You can also use an online monitor to deter-

mine where the majority of the time is spent. Then spend

your effort working on the major reason for elapsed time.

For example, if only 5% of the elapsed time is execution

and 70~o is I/0, spend your time on reducing the I/O

component of elapsed time.

REDUCE 1/0, CPU, & PAGING

Any reduction in the number of 1/0s, the length of

time to perform an 1/0, the amount of CPU time con-

sumed, or the amount of paging, will reduce the elapsed

time. While this seems obvious, many people forget to

work on the basics before stepping into more complex

areas. Simply determine where the majority of time is

spent and then concentrate on that area.

REDUCE SWAPPING

There are two types of swaps - those caused by the

program and those caused by SRM attempting to maintain

the balance of the resources (unilateral or exchange

swaps). If a job has been swapped out, you can determine

the type of swap by analyzing the SMF data (see the

August 92 issue on page 20). “Swapped out& ready”

refers to swaps controlled by SRM. To reduce these

swaps, you must analyze the SRM parameters. This is

really a system programmer’s function and not an applica-

tion tuning function (so I won’t address it here).

If you want to see what tyW of swap or how many

swaps a job is experiencing, you can use an online moni-

tor. For example, Figure 1 shows an RMF Monitor II

ASD report. If you display swapped out jobs, such as

using ASD A,A,A in Monitor II, then you can see the

reason for the last swap, R LS (DW for detected waits

and LW for long waits), and the number of swaps, TX

SC (the transaction swap count). If there are many

swaps, then you know that the job has keen delayed at

least that many times.

The swaps caused by a program usually fall into

either long waits or detected waits. Long waits occur

when the program issues a wait with TYPE=LONG or

issues a STIMER with a wait of over 1/2 second. Long

waits due to TYPE=LONG are most often issued by

programs that expect to wait for some response, either

from an operator or from another program. There are

usually very few application waits for this reason.

STIMERS with waits over 1/2 second may occur in a

vendor program that is collecting measurement data over

a long period of time and collects or samples the data

very frequently, such as every second or twice a second.

Any monitor or collector that obtains data this frequently

should be marked as non-swappable in the PPT.

A detected wait occurs when a program goes into a

wait and is still waiting after 2 seconds (it-’s actually

calculated as 106 SRM seconds divided by the number of

SRM seconds per second and comparing to the minimum

of 2 seconds). Detected waits are often produced by

enqueue conflicts, shared DASD RESERVES, or pro-

grams that forgot to issue TYPE=LONG waits. It may

take some work to determine the reason for the detected

waits, but you can reduce the swaps if you can find the

reason. The enqueue conflicts and shared DASD prob-

lems can normally be identified by looking at enqueue

delays and device activity reports. See the MVS MEA-

SUREMENT section on interpreting enqueue reports.

Another indication of enqueue delay can be found in

the RMF Monitor I Swap Placement Activity report when

ENQUHJE EXCHANGE swaps occur. An enqueue

exchange swap occurs if a swapWd out and ready user is

F MIG=319 CPU= 97 UIC= 38 PFR= 63

09:03:41 PPCRDPCS ESF CS TAR X PIN ES
JOBNAME DMN GPLLSPR F TAR WSS M RT RT

MASTER
PCAUTH
RASP
TRACE
GRS
DUMPSRV
CONSOLE

ALLOCAS

LLA

BATJOB1

o 01 NSFF 5023 o
10

0.0 0.0
10 1 NS 7A 34 0 0 0 x 0.0 15

10 10 1 NS 7A 34 0 0 0 x 0.0 15
10 10 1 NS 7A 125 0 0 0 x 0.0 15

0 OINS FF 1381 14 16.7K 32.8K X 0.0 15
0 OINS 7A 125 0 0 0 0.0 15

10 10 1 NS FF 47 2 0 x 0.0 15
10 10 1 NS 7A 109 91 0 x 0.0 15
10 10 1 NS 7A 211 125 0 0 x 0.0 20

3141 WLLW 525834 0.0 5

AS D T

TX SWAP WSM
Sc RV RV

o 0
0 150

0 0
0 0
0 150
0 150

1 150
1 0

0 0

125 0

Figure 1- RMF Monitor II ASD Display (ESA)

8 @ 1992 Watson & Walker, Inc. ● 800-553-4562

Cheryl Watson k
TUNING Letter September/October 1992

hoMing a resource that a swapped in user wants. When

that condition occurs, SRM will swap in the out and ready

user and will swap out another address space (not neces-

sarily the one asking for the resource). Enqueue delays

can still occur without seeing any of these swaps, because

the swaps will only occur in a constrained system where

SRM has some jobs swapped out and ready.

In either the case of long waits or detected waits, if

you cannot reduce the number of swaps and they are

excessive or causing a delay in the application, you can

reduce them by making the address space non-swappable.

This is done by specifying the program name in the

SCHEDXX parmlib member and indicating “NOSWAP”.

The minimal stomge used for this should easily be paid

for in reduced CPU time. If storage is a concern, you can

also storage isolate or storage restrict it.

REDUCE ENQUEUES

Enqueue delays don’t necessarily cause a detected

swap or an enqueue exchange swap. In fact, if the

enqueue is resolved within two seconds, SRM won’t swap

it as a detected wait, and there will be no indication that a

conflict existed. There’s a possibility that an enqueue

conflict will identify the jobs that hold the resource and

are waiting on the resource by looking at the RMF Moni-
tor I Enqueue Report. See the later section on MVS

MEASUREMENTS for analysis of enqueues.

REDUCE TAPE MOUNTS

This was covered in last month’s issue, but is a major

factor in elapsed time and so should be included in this

discussion. Tape mount delay can often amount to over

90% of a job’s elapsed time. Watch this carefully. As

mentioned last month, you can reduce tape mount delay

by:

Moving the dataset to DASD

Avoid use of UNIT=AFF=ddname

Use UNIT=(TAPE,2) if multi-volume

Increasing the blocksize to reduce the volumes.

REDUCE OPERATOR REPLIES

Programs that require operator replies may see very

long elapsed times if the operators are busy with other

priorities. Avoid these at all costs. They are especially

damaging to sites that hope to go to a “lights out” opera-

tion. Find some way to automate the process without
requiring operator intervention. This process must be

accomplished before automated operations can be fully

implemented - so you might as well start now!

BENEFITS

The primary benefit of reduced elapsed time is a

higher probability of meeting service level objectives for

batch jobs. A secondary benefit in reducing the elapsed

time is the possibility to run more jobs during the same

period of time (increasing the throughput rate). Reduc-

tion of swaps will reduce total I/O and CPU time on the

system, normally seen in uncaptured time or master

scheduler CPU times and not the actual jobs.

COSTS

There are no identifnble costs in the items men-

tioned above.

CHARGE BACK ISSUES

Since most of the swap time is not reported in the

address space records, there is little effect on charge

back. However, since charge back may be based on

meeting service level objectives, you stand the chance of

hitting the objectives more frequently when you’ve re-

duced elapsed time.

If you’re running MVS/ESA and do charge back on

RCT (region control task) time and SRB time, you may

see a reduction in costs because there is some swap time

accounted for in both of these fields.

REFERENCES

See the May 91 issue (page 3 for swapping in gener-

al and page 19 for unnecessary swaps). Review the

October, November & December 91 issues on SRM

swapping. See the MVS MEASUREMENT section in

this issue for enqueue anrdysis.

USING BATCH LSR
Parts of the following section were fwst included in the

September 91 issue on page 11, but are included here with

updates and additional detail. I’m including them again be-

cause batch LSR undoubtedly provides some of the most im-
pressive savings of any of the ESA facilities. Users of non-IBM
products, such as VSAM 110 PLUS from SoftWorks (see the
PRODUCT HIGHLIGHT), have been enjoying these Qpes of

benefits for the last several years.

BLSR (Batch Local Shared Resources) is one of the

best things to come along in quite a while. It provides

buffer lookaside facility for batch jobs accessing VSAM

files (KSDS or RRDS) and is available in ESA SP 3 with

APAR 0Y24097 and is standard in ESA SP 4. Prior to

@ 1992 Watson & Walker, Inc. ● 800-553-4562
9

Cheyl Watson>
TUNING Letter September/October 1992

IBM’s implementation, there were several products from

other vendors that provided the same facility. These are

still very good choices. Some of these were mentioned in

the Product Bibliography in the July 91 issue.

BLSR allows using LSR with batch jobs by only

changing the JCL and does not require hiperspaces. The

main benefit that it provides is its “lookaside” processing.

In a standard NSR (non-shared resources) environment,

VSAM will use the minimum number of data buffers and

not look to see if data is already in storage. For example,

in NSR if you read CI 100, then read in Cl 2000, the

second CI will overlay the first. Then, if you need to read

CI 100 again, it will require another 1/0. With batch

LSR, if you provide multiple buffers, VSAM will leave

the CIS in the buffers until it needs more buffers. So

reading CI 100 will place it in the f~st buffeq reading CI

2000 would place it in the second buffe~ and the read of

CI 100 again would simply access the in-storage buffer,

saving an 1/0.

This Iookaside processing also applies to indexes. In

the standard NSR batch job, only one index record for

each level is looked at. In LSR, you could bring all in-

dexes in storage and eliminate all index 1/0 activity.

A second use of BLSR is to allow a single set of

buffers for multiple VSAM components. This allows a

reduction in virtual storage needed for accessing many

VSAM files simultaneously.

A third use of BLSR is the ability to place VSAM

buffers and control blocks above the 16Mb line without

having to use hiperspaces.

BLSR is extremely beneficial for high activity KSDS

or RRDS files with mndom processing, especially where

CIS are accessed multiple times. It can degrade perfor-

mance for sequential processing, since it doesn’t use

chained scheduling or read-ahead logic. Before I explain

how batch LSR is implemented. let me give you a couple

of examples of its use.

What initially caught my eye about BLSR was a

presentation given by Terri Voelker of Consolidated Pa-

pers. She had implemented BLSR on two jobs to find the

following savings: Reduced elapsed time from 20 minutes

to 2 minutes in the ftrst job after implementing BLSR (the

second job went from 168 to 69 minutes), reduced CPU

seconds from 62 to 47 (and 245 to 113), reduced EXCPS

from 57K to 880 (and 10.5 million to 8.1 million). One

other major job was reduced from almost 70 million

EXCPS to less than 2 million. All significant savings with

minimal effort!

Tom Aubrey of Commemial Union Insurance found

similar significant savings with the use of BLSR. One

job went from over 80 minutes to less than 18 minutes,

with a 96% reduction in 1/0s (from 181,461 to 7,012)

and a 63% reduction in CPU time, Another job went

from over 5 hours elapsed to less than 13 minutes with a

75% reduction in CPU and over 99% reduction in 1/0s.

Now have I got your attention? What’s the negative

side of this? It takes more storage of course. Use of

BLSR takes more virtual storage, more central storage,

and more freed central storage. If these are batch jobs

run during non-prime time, however, it shouldn’t be a

major problem. Just be careful of its use when your

online systems are up. If you have expanded storage,

you can also use hiperspaces for the buffers. An addi-

tional feature is that BLSR can provide VSAM deferred

write, where the CI is not written until the buffer is

needed for another CI. This is effective if there are

multiple updates to a single CI, but leads to integrity

issues if there are failures.

•1

•1

•1

How to implement it? Fairly simple.

Order the manuals for BLSR and review them:

GC28-1059 (BLSR for SP 3) and GC28-1672 (BLSR

for SP 4), Also get GG24-3698, MVS/ESAand
Data in Member Performance Studies.

Ensure that you have the software to support BLSR.

This includes MVS/ESA SP 3.1.0 with APAR

0Y24097, or MVS/ESA SP 4. You’ll also need

DFP 2.3 with APAR 0Y23661 or DFP 3.1 or above

with APAR 0Y20341. Lmk at the fix for APAR

0Y33523 which prevents excessive page f~es below

16Mb when using BLSR (applicable to SP 3).

Identify jobs that might be good candidates for

BLSR. These are easiest to identify by looklng at

SMF type 64 records (written at VSAM close). You

can extract any type 64 records with the following

characteristics:

VSAM KSDS or RRDS

Randomly accessed (SMF64MC 1 indicates mode)

High number of EXCPS

High elapsed times (from open to close)

Jobs that get the most benefit from BLSR are those

that access records in the same section of the file, but

no SMF records provide that amount of detail.

The SMF record contains the jobname, VSAM clus-

ter name, component type (data or index), component

name, and time of day. Since BLSR takes a lot of

virtual storage and processor storage, you may not

10
@ 1992 Watson & Walker, Inc. ● 800-553-4562

Cheryl ‘Watson k
TUNING Letter September/October 1992

•1

•1

❑

❑

want to implement BLSR for a job that runs when

online systems are up and running.

You can also ask your IBM SE for a marketing tool

called BLSRAID. This program looks at the type 64

records to identify good candidates using the same

criteria mentioned above. This is a SAS program that

should first be changed to sort in descending EXCP

sequence to reduce the effort of analysis.

Install the subsystem as described in the manuals,

which is simply updating some parmlib members.

This includes adding a line to IEFSSNXX in

SYS 1.PARMLIB to define BLSR:

ssnm.CSRBISUB

where ssnm is the name (recommendation is BLSR).

This requires an re-IPL of the system to install it.

BLSR allows any user to create hiperspace buffers by

using parameters HBUFND and HBUFNI. If you

want to restrict this capability. implement RACF con-

trol as described in the BLSR manual.

Once you have found some applicable jobs, test one at

a time by running them with BSLR. You’ll simply

need to change the JCL. If a job looks like it might

get some benefit from BLSR, then you can continue

to tune it by adding additional buffers.

In each job, you’ll need to add an additional JCL

statement. Here’s a small example

JCL before BLSR

/iFILX DD DSN=cluster,DISP=SHR

JCL after BLSR:

//FIL DD DSN=cluster,DISP=SHR

//FILX DD SUBSYS=(BLSR,’DDNAME=FIL’)

Once you’ve found a job that cart achieve some sav-

ings with BLSR, then tune the job with buffers. The

following parameters can be added to the SUBSYS

statement BUFND, BUFNI, HBUFND, HBUFNJ,

RMODE31, STRNO, DEFERW, SHRPOOL, BUFSD,

BUFSI, and MSG. Many of these parameters were

added to SP 3 with APAR 0Y33523.

RMODE31 indicates whether you want the VSAM

buffers and control blocks to reside above the 16Mb

line and is only available in SP 4. The values of this

subparameter are:

O 1992 Watson & Walker,

ALL - buffers and control blocks above 16Mb

BUFF - only buffers above 16Mb

CB - only control blocks above 16Mb

NONE - buffers & control blocks below 16Mb

Unless you have a specific reason to keep these
below the line, you should specify RMODE3 I=ALL.
The default is RMODE3 l=CB.

BUFND is the number of data buffers. If

RMODE31 indicates ALL or BUFF, the default

BUFND is the number of buffers that will fit in

5Mb. If buffers are below the line, the default is the

number of buffers that will fit in 250K. If virtual

storage (and therefore central storage) is available,

specifying a large number of buffers will reduce the

elapsed time, number of EXCPS and CPU time of a

job.

BUFNI is the number of index buffers. The defaults

are the same as BUFND. For random processing,

you only need enough buffers to contain the entire

index set. If you provide at least that many buffers,

you can practically eliminate all EXCPS to the index

component.

HBUFND is the number of data buffers that will be

created in a hiperspace. The default is to not use

hiperspace buffers and use the address space buffers

only. RACF may be used to restrict use of these

hiperspaces. In general, unless you have much more

expanded storage than central storage, address space

buffers provide more savings than hiperspace buffers

(less CPU time). In a system with an overabundance

of ESTOR, you might be able to get more buffers

using hiperspace buffers and therefore provide more

savings.

HBUFNI is the number of index buffers created

hiperspace. The same logic holds true as for

HBUFND.

in a

STRNO is used to indicate how many concurrent

accesses may be made to the VSAM LSR pool. The

default of 16 should be sufficient for almost all jobs.

Most batch jobs only need one srnng per VSAM file

plus one string for each alternate index, so you can

easily determine if more than 16 stings are needed.

DEFERW=YES or NO indicates whether VSAM

deferred write (DFR) is to be used. Non-deferred

write @JDF) causes VSAM to write the CI inunedi-

ately to DASD when a write or put is issued. DFR

only writes the CI when the CI is needed for another

request. If you have a lot of updates within a single

CI, DFR could reduce the number of 1/0s. There is

Inc. Q800-553-4562 11

(Yieyl Watson k
TUNING Letter September/October 1992

an exposure, however, if you are logging updates and

the system comes down. Using DFR, you might think

the update has been completed, but it will not have

been physically updated on the fde. DEFERW can

reduce the number of I/Os, but be careful of its use.

SHRPOOL is used to specify one of 16 LSR pools to

the dataset. As a default, BLSR will put each dataset

in a separate LSR pool. If you want to combine

certain datasets in the same pool, specify them with

this parameter, Note manual GG24-3698 indicates

that you can’t share pools, but manual GC28-1672

indicates that you can. I haven’t tried it nor met

anyone who has, but if you have, please let me know!

MSG indicates the level of message that should be

placed in the user’s job log. Values are E - only

error messages, W - warning and error messages, I -
informational, warning and error messages. The de-

fault is W. I’d recommend using I until you’re more

experienced with BLSR, then change it back to W or

even E.

BUFSD is the size of the data buffer. It defaults to

the data CI size. You’ll only need to specify this

when placing multiple VSAM files with different CI

sizes in the same shared pool.

BUFSI is the size of the index buffer. It defaults to

the index CI size. See the previous pamgraph.

To test the effect of these parameters, you’ll need to

run the job without BLSR and with BLSR and look at

the differences in elapsed time, CPU time, EXCPS,

and physical I/Os. You can look at type 64 records to

get the number of EXCPS and the type 30 records to

get the amount of CPU and elapsed times. A conve-

nient way to get physicrd I/Os on the data and index

components is to run a LISTCAT ALL before and

after each run and look at the number of I/Os before

and after. The September 91 issue descrik-d how to

analyze LISTCAT output.

As an example of using these parameters, the JCL

described earlier might look like this after testing:

/iFIL DD DSN=cluster,DISP=SHR
//FILX DD SUBSYS=(BLSR,’DDNAME=FIL’,

‘BUFND=5000,BUFNI=500,

; RMODE3 l=ALL,MSG=I’)

RESTRICTIONS

The following facilities or conditions are incompatible

with BLSR and will be identified by BLSR and a message

issued

12 @ 1992 Watson & Walker,

1

1

1

1

I

i

1

MACRF option RESET (reuse)

MACRF option UBF (user buffering)

System Data Set (bit in the ACB)

MACRF option ICI (improved CI processing)

Control blocks in common (bit in the ACB)

MACRF option GRS (global shared resources)

Empty data set

The following facilities or conditions are incompati-

ble with BLSR, but can’t be identified by BLSR

Chained RPLs (NXTRPL option on RPL)

Implied sequential positioning (NSR assumes fmt

GET is to start of file).

BENEFITS

If BLSR is effective in a job, it will reduce the

amount of CPU time, elapsed time, and number of

EXCPS. If BLSR is not effective in a job, it will take

more virtual storage and not get any reduction in CPU,

dapsed or EXCPS.

COSTS

Batch LSR requires more virtual storage and so will

typically require more central and expanded storage. If

~hejob is swapped out, the working set will be larger and

the swap will take longer. The additional storage could

impact other workloads on the system since the system

paging rate could. increase.

The primary cost of BLSR comes from the research

to determine applicable jobs that can use BLSR. This

will take someone’s time, either the application

programmer’s or the system programmer’s. It will also

take additional jobs to analyze SMF records and run test

jobs to see if they benefit from BLSR. Then there will

be additional tuning time to dekmnine the optimum

number of buffers.

CHARGE BACK ISSUES

Boy, will this affect the charges for a job! You can’t

help it when you reduce CPU time by 75% and I/Os by

99%. Charges for BLSR jobs should be significantly less

than not using BLSR. The question, really, is who will

be charged for the research time.

USING HIPERBATCH

Hiperbatch is an ESA facility that has few applica-

tions, but when it does apply, it’s astounding!

Inc. 0800-553-4562

~heyl Watson k

TUNING Letter September/October 1992
Hiperbatch works with DLF (Data Lookaside Facility) in

using a hiperspace for accessing VSAM or QSAM data-

sets. It has the potential of eliminating thousands of 1/0s

and reducing the CPU time and elapsed time significantly.

It can also increase all of these resources if used with pro-

grams that can’t benefit from the facility.

DLF is implemented with a combination of RACF and

MVS facilities. A parmlib member, COFDLFXX, defines

the ESTOR limits: MAXEXPB (the maximum ESTOR

megabytes that hiperbatch will use) and PCTRETB (the

maximum percent of MAXEXPB that will be used for

RETAINed datasets which are defined later). DLF runs as

a started task and is normally started at IPL with:

S DLF,SUB=MSTRJNN=XX

where xx is the suffix of COFDLFXX.

There are two types of DLF datasets: RETAINed and

non-RETAINed. A RETAINed dataset starts to use the

hiperspace when the file is created or when the fmt

WRITE to the dataset occurs. RETAfNed frames can

only be deleted by specifically running a job to delete

them. If you forget to run the job, the frames will contin-

ue to occupy ESTOR. A non-RETATNed dataset uses a

hiperspace on the fwst READ and deletes the frames when

the last user closes the file. Essentially, DLF manages a

hiperspace that will hold pages as they’re referenced for a

hiperbatch dataset. Savings are seen when a subsequent

access from the original address space or any other ad-

dress space needs to access the same data.

Hiperbatch is very good in the following three instanc-

es: 1) a dataset set is simultaneously accessed by multi-
ple address spaces, 2) a subset of a dataset’s records are

repeatedly accessed by the same or multiple address spac-

es, and 3) a dataset (small enough to reside in ESTOR)

is created in one step and accessed by one or more ad-

dress spaces or steps directly after creation.

Because hiperbatch uses the Move Page facility

(which takes half of the time of @aditionrd moves between

CSTOR and ESTOR and thus is responsible for much of

the savings), it can only be used in environments that

support Move Page. Move Page (MVPG) is supported on

ESf3090 model J machines, ES/3090S machines with EC

228862), and ES/9000 machines. Check with your

Amdahl or Hitachi rep for availability on those machines.

The DLF address space must be active before hiper-

batch can be used. It’s this address space that owns the
hiperspace(s) required by the dataset. RACF 1.9 supports

DLF by requiring a hiperbatch/DLF Eligibility Exit,

COFXDLF1. Examples are in SYS1.SAMPLIB via DEV
APARs 0Y28154 or OY3O21O for SP 3. To define a

dataset that will use hiperbatch, the dataset name must be

specified in this exit. That means that you can’t easily

indicate use of hiperbatch via the JCL!

There are several restrictions to keep in mind when

evaluating datasets that might use hiperbatch:

General restrictions:

Hiperbatch won’t run on 4381 9XE models

Checkpoint/restart is not supported

DB2 tables are not supported

Not supported on machines without Move Page

facility

Not suppmted for shared DASD systems

Not supported for PDSes

Not supported for IEBGENER (use ICEGENER

or SYNCGENR instead)

Initiatly read or written to sequentially

VSAM datasets:

CISIZE must be multiple of 4K

ESDS, RRDS, KSDS allowed, but not LDS

DFSORT can use

No shared resources (LSR or GSR)

No catalogs

Not accessed with shareoptions 3 or 4

QSAM datasets:

DASD only

DFSORT can only use via E15/E35 exits.

IBM has a marketing tool called HBAID that may

help fmd some good candidates for hiperbatch. It uses

SMF to try to determine multiple accesses that can bene-

fit from hiperbatch. Or you can write a program to look

at dataset access. Look for QSAM datasets in the SMF

type 14 & 15 records. Collect data for high activity

QSAM datasets accessed by multiple users during the

same time period.

To get the maximum benefit from hiperbatch, you

may have to change scheduling to execute those jobs at

the same time. Look for VSAM datasets in the SMF

type @ records. Collect data for high activity VSAM

datasets where the fde corresponds to the restrictions

listed above. Then you’ll simply have to test out each of

the datasets. Since hiperbatch can take resources away

from other users, you should restrict your testing to high

priority batch or TSO users with very high activity fdes

(found at the top of the top twenty list, for example).

Yes, this takes lots & lots of work! Many sites have

tried for a month or more to fmd appropriate datasets

with no success. Others have found one or two fdes that

can really benefit from hiperbatch and have results that
look like: reduction of 85% of EXCPS with a correspond-

(3 1992 Watson & Walker, Inc. ● 800-553-4562 13

Cheyl Watson k
TUNING Letter September/October 1992

ing 10% increase in CPU and 75~0 reduction in elapsed

titne reduction of EXCPS from 5 million to 200,000

(with an increase in CPU time and a tremendous decrease

in elapsed time)! IBM provides a Hiperbatch monitor in

SYS 1.SAMPLIB that can be used to monitor hiperbatch

using a TSO command, COFDMON. (I’m not sum if this

is available in only SP 4 or not).

I’m not going to take the space for a step-by-step

implementation of hiperbatch, but simply suggest it as a

possibility to reduce 1/0. Before you start on a project to

determine the benefits of hiperbatch, obtain IBM manual

GC28-1673, MVS/ESA SP 4 Application Development

Guide Hiperbatch, and read it from cover to cover before

starting your project! The SP 3.1.3 manual is GC28-1200.

Another excellent manual was mentioned in the BLSR

section and is GG24-3698, MVS/ESA and Data in Memo-

ry Performance Studies.

Hiperbatch can greatly increase the CPU busy. In one

of the examples from GG24- 1698, CPU busy went from

50-70% to 75-95% because the CPU that was used in 24

minutes had to be used in 17 minutes elapsed time. This

is true even if you ignore the increase in overhead due to

use of ESTORE and hiperbatch.

I personally think that other options, such as batch

LSR and passing VIO datasets, are much more effective

and infinitely easier to use than hiperbatch. You might

consider, however, teaching the application designers

about the option of hiperbatch. If they knew a facility

such as hiperbatch exists, they might be able to design

systems that can take advantage of the facility. The real

benefit of hiperbatch will be the uses made of it by sub-

systems, such as DB2.

If you choose to use hiperbatch, you might consider

using a little trick with non-retained datasets. Assume you

have severat jobs that read the same dataset and they all

run at night (but maybe not every one of them at the same

time). Since they are only read, they’re implemented as

non-retained datasets. But if one job reads the dataset

(which is then placed in the hiperspace) and completes

before the next job starts, the hiperspace would be deleted.

In order to keep the dataset in the hiperspace until all jobs

have accessed it, some sites will start up a job that opens

the file for input, goes into a wait, but doesn’t have any

accesses (this will cause the dataset to be managed by

DLF). Then all jobs that need the dataset are run. When

the last job is completed, it can force a cancellation of the

original job. This is referred to as a sleeper job and an

example of this can be found in the DIM manual I previ-

ously mentioned, GG24-3698.

MISCELLANEOUS

MORE ON REDUCING 1/0

Be sure to look twice at last month’s recommenda-

tion on using VIO. I was talking to Tom Fleming from

Mellon Bank last week and he mentioned that they had

some remarkable success with using VIO. He cited a 10-
hour job that was reduced to six hours by implementing

VIO. They restrict the VIO files to no more than 100

cylinders artd have found very good applications for

them.

One more way to reduce 1/0 is to reduce the I/O of

searching PDS directories and loading programs into

storage. In an MVS/ESA environment, you can consider

the use of LLA and VLF to reduce 1/0 delays.

sections on LLA and VLF later in this issue.

TECHNICAL SUPPORT ARTICLE

There was a good article in the August 92

Technical Support titled “Applications Tuning:

See the

issue of

The Final

Frontier?” by- Steven K. Thornbrugh. The m~jority of the

article discusses a strategy and methodology for applica-
tions tuning. He ends the article with a list of recom-

mendations for tuning consideration. 1’11simply list the

items that haven’t already been covered in last month’s

issue (August 92) and this one. This list identiiles some

of the things that can be done, but not how to implement

then. Perhaps in a later issue!

Miscellaneous Considerations:

Eliminate image copies with DBRC.

Eliminate redundant data base backup jobs.

Reduce job run frequencies.

Reduce data base reorganizations if done frequently.

Convert IMS BMPs to DLI batch.

Use current levels of vendor’s application software.

Reschedule work from prime shift to offshift.

Use the lowest job priority necessary to get work

done.

Use software modeling tools.

IMS Consideration

Use IMS call analysis to eliminate redundant 1/0.
Watch data base structures (e.g. insert/delete rules,

physical logical relationships and long twin

chains).

Redesign data bases where appropriate.

Establish daily IMS log fde for critical data bases.

14 @ 1992 Watson & Walker, Inc. ● 800-553-4562

Clieyl Watson k
TUNING Letter September/October 1992

Use pointer checker to locate long twin chains.

Evaluate program logic for “hot spots”.

Rewrite programs as needed.

Split large programs.

Reduce IMS calls.

Optimize search fields.

Specify read limits.

Use physical views of logical segments for some

replace operations.

Utilize path calls.

Throughput Considerations:

Cache selected data bases.

Eliminate exclusive use of data bases if possible.

Use pamdlel processing to overlap jobs.

Utilize remote printer facilities.

Split selected batch jobstreams.

Utilize a job scheduler.

MVS MEASUREMENTS

ENQUEUE ANALYSIS

Enqueue contention can be collected and reported

through RN@ Monitor I. In order to understand the re-

port, let me give an overview of enqueue f~st. Programs

can use the enqueue mechanism to serialize their work,

typically done to prevent simultaneous update. The most

common form of enqueue is the enqueue on a data set.

Enqueues are initiated by issuing an ENQ macro

which specifies a major name (called qname), a minor

name (called rname), and a type of allocation. The type

of allocation can be shared or exclusive. Exclusive indi-

cates that only one user may access the resource and

shared indicates that multiple users may access the re-

source at once. Each application uses a standard set of

names. Dataset allocation, for example, uses a major

name of SYSDSN, a minor name of the dataset, and uses

DISP.SHR for shared enqueues and DISP=OLD for

exclusive enqueues.

The ENQ macro converts into a call to GRS, Global

Resource Serialization, who in turn checks its table of

currently enqueued resources. If the resource is not

allocated to a conflicting type of allocation (shared if

exclusive is requested or allocated exclusive), the user

can continue. Otherwise, the user must wait for the

resource to be released with a DEQ macro. If the wait is

excessive, the waiting address space could be swapped

out on a DETECTED WAIT. If you are experiencing

many detected waits, you could look to see if there are

many enqueue delays.

Another indication of enqueue delay is the presence

of ENQUEUE EXCHANGE swaps. These only occur if

SRM has swapped out some ready users and a swapped

out user is holding a resource that a swapped in user

needs. In this situation, SRM will swap in the user

holding the resource and swap out another user (not

necessarily the one requesting the resource). The

swapped in job will have a high priority to stay swapped

in until it has accumulated the amount of TCB service

units specified on the ERV in IEAOPTXX (the default is

500).

RMFMonitor I has two reports that may be of use.

The level of detail is determined by parameters defined

in ERBRMFxx when RMF Monitor I is started. The

parameter ENQ(DETAIL) collects job level information

for resources and ENQ(S UMMARY) simply collects total

statistics for resources. Many sites don’t want to collect

the detail level information because it’s too much data.

However, summary data won’t tell you what jobs are

experiencing the delays.

Here’s my recommendation if you’re trying to reduce

the large volume of data. Use ENQ(SU*Y) for a

MVS/ESA
SP3 .1.3

- NANE -
NAJOR

MINOR

SYSDSN
PAYR .MON FILE1 (SYSTEMS)

SYSIGGV2
CATALOG PAYR [SYSTEMS)

EN QUEUE ACTIVITY
PAGE 1

SYSTEM ID SYSA DATE 07/18/92 INTERVAL 15.00.988
RPT VERSION 4 .1.2 TIME 09.45.02 cYCLE 1.000 SECONDS

----- CONTENTION TIME ----- -%QLEN DISTRIBUTION- AVG Q -REQUEST TYPE - TOTAL
MIN NAX TOT AVG 123 4 + LNGTH -EXCL- -SHARE- EVENI’

MIN MAX MIN MAX

13.173 44.613 201.09 28.727 100 0.0 0.0 0.0 1.001100 7

0.003 4.544 4.637 0.927 80.0 20.0 0.0 0.0 1.200101 5

‘igure 2- RMF Monitor I Enqueue Summary Report

@ 1992 Watson & Walker, Inc. ● 800-553-4562
15

Cheryl Watson k
TUNING Letter September/October 1992

NVSIESA
SP3 .1.3

- NANE - ----- CONTENTION TIME -----
MAJOR MIN MAX TOT AVG

MINOR

SYSDSN
PAYR .MON . FILE1 (SYSTEMS)

13.173 44.613 201.09 28.727

SYSIGGV2
CATALCG . PAYS (SYSTENS)

EN QUEUE ACTIVITY
PAGE

SYSTEN ID SYSA
RFT VERSION 4.1.2

DATE 07/18/92
TIME 09.45.02

INTERVAL 15.00.988
CYCLE 1.000 SECONDS

-- JOBS AT MAXIMUN CON’TENTION-- -%QLEN DISTRIBWI’ION- AVG Q -REQUEST TYFE - TOTAL
----- OWN ----- ----- WAIT ---- 1 2 3 4 + LNGTH - EXCL- -SHARE- EVENT
TOT NANE TOT NAME MIN NAX MIN MAX

SYSNANE SYSNANE

1 PAYJOB1 (E) 2 G0708001 (E) 100 0.0 0.0 0.0 1.001100 7
SYSA SYSA

0.003 4.544 4.637 0.927 1 CATALUG (S) 2 CATALOG (E) 80.0 20.0 0.0 0.0 1.200101 5
SYSA SYSA

CATALOG (S)
SYSA

Figure 3- RMF Monitor I Enqueue Detail Report

few days or weeks until you’ve identified the typical long

enqueues (described later). Then specify

ENQ(SUMMAR Y) once and ENQ(DETAIL,majomame)
for each majomame that has long enqueues. To decrease

the volume even further, you can qualify it with:

ENQ(DETAIL,majomame,minomame). This will give

you the details with minimal overhead.

Resource names are often not documented if they’re

from non-IBM vendors, but most can be identified by their

prefix (e.g. UCC...). Most MVS names are documented in

the MVS/ESA System Reference Manual (LY28-1011 for

SP 3, LY28-1820 for SP 4) or the MVS/XA Debugging

Guide, Volume 1 (LC28-1 164). A few of the most com-

mon major and minor names are:

SYSDSN,dsname Data set enqueues

SYSIGGVl~CATOPEN Master catalog

SYSIGGV2,catalog Catalog

SYSVSAM,dsname VSAM

SYSVTOC,volser VTOC activity

Now let’s look at an analysis of the reports. Figure 2

shows a sample of a summary report and Figure 3 shows

a sample detail report. The detail report has simply added

the name of the job(s) holdlng the resource and those

waiting. Let’s look at the summary report fwst in Figure
2. This shows two resources that had enqueue contention:

a dataset, PAYR.MON.FILE1 and a catalog,

CATALOG.PAYR. The columns called CONTENTION

TIME show the minimum, maximum, total, and average

time that contention existed on the resomce. These units

are in seconds. The far right column is the total number

of enqueue occurrences that had contention.

In Figure 2, the dataset had seven enqueue conflicts.

The shortest one lasted 13.173 seconds, the longest was

44.613 seconds, the total of all seven was 201.09 seconds

16 @ 1992 Watson & Walker,

for an average of 28.727. Were these all the enqueues to

this dataset?- No, just the ones that were delayed. If

batch jobs are accessing this dataset, the delays aren’t

enormous, but they’d be devastating for any online ac-

cess. Notice that the summary report doesn’t give the

job names. Additional fields in the Eport include the

AVG Q LNGTH which is the average number of users

waiting for the resource. For the dataset, this was an

average of 1.00.

The %QLEN DISTRIBUTION shows the percent of

time a queue existed for each number in the queue. So

in the catalog line, we see that 80% of the time there was

one job in the queue and 20% of the time there were 2

jobs waiting for the resource. The REQUEST TYPE

shows the minimum and maximum number of users

waiting by the type of request. Use this report to fmd

resources that are causing long delays (perhaps more than

a 5 second average) and track them using the detail

report.

Figure 3 shows the corresponding detail report. Now

we can see the jobs involved in the enqueue. For the

dataset, PAYR.MON.FILE1, we see that the job,

JOBPAY1, owned it exclusively while job G0708001

wanted it exclusively. The catalog was owned by the

CATALOG address space and also required by CATA-
LOG. The original requests were for jobs that aren’t

identifkl. This simply shows that a conflict existed on

the catalog. Catalog delays, by the way, can be reduced

by dividing the catalog into smaller user catalogs or by

using VLF to store catalog records (only in MWVESA).
See the section later in this issue on TUNING CATA-

LOG & VLF.

A max of two jobs are shown (either using the re-

source or waiting for the resource), so other jobs may

have been involved in enqueue delays. The system sim-

Inc. ● 800-553-4562

Cheyl Watsun k

TUNING Letter SeDtember/October 1992
ply picks the jobs during the period of highest contention.

For the dataset entry, that means (probably!) that

PAYJOB 1 was holding the dataset for 44.613 seconds

while G0708001 wanted it. The primary things to look

for are high priority jobs that are waiting for resources

from lower priority jobs. Try to tind a way tQ eliminate

these conflicts. This is often accomplished through chang-

es in schedules,

MVS OVERVIEW

VLF OVERVIEW

VLF, Virtuat Lookaside Facility, is an ESA facility

that can be thought of as a general purpose data space

manager. Some people have referred to it as a data space

“access method”. It is a facility that can create and man-

age data spaces for other applications. The initial IBM

users of this facility include LLA (Library Lookaside

Facility), TSO, catalog, and RACF. VLF is a standard

feature of SP4 and is available on SP 3.1.3 with APAR

0Y24097.

VLF runs as a non-swappable address space which is

normally started at IPL time. Parameters in

SYS 1.PARMLIB define classes that can be managed by

VLF. VLF will create two data spaces for each class, one

for objects and one containing control info about the

objects. Objects can be anything, such as modules,

CLISTS, EXECS, catalog records, or RACF group records.

VLF is normally started after IPL with:

S VLF,SUB=MSTRm=xx

where xx is the suffix of a parmlib member, COFVLFXX.

The sample, distributed PROC is:

//VLF PROC NN=OO

//VLF EXEC PGM=COFMINIT~ARM= ’NN=&NN’

//IEFPARM DD DSN=SYS1.PARMLIB,DISP=SHR

IEFPARM defines the location of the partrdib member and

can be something other than SYS 1.PARMLIB.

COFVLFXX

This member defines the maximum number of virtual

space (in 4K frames) that can be assigned to the data

spaces for each of the classes. Internally VLF manages

classes, each class having one or more major names asso-

ciated with i~ and each major name having one or more

minor names associated with it. For example, the TSO

class name is IKJEXEC, a major name would be a

CLIST library, such as SYS3.CLIB, and the minor names

(or objects) would be CLIST names, such as #ISMF.

The COFVLFXX member defines classes, major

names, and virtual storage limits. There are two formats.

If the objects are members of partitioned data sets, the

pammeter EDSN defines the data set. Use of EDSN

indicates that VLF will automatically be notifkd if a

member of the library is changed on the same system

with a STOW. If the objects are managed by the appli-

cation, EMAJ is used. Following are samples for the

four MVS facilities:

CLASS NAME(CSVLLA) j“ LLA *f

EMAJ(LLA)

MAXVIRT(4096)

CLASS NAME(IKJEXEC) /“ TSO ‘/

EDSN(SYS3.ESA.CLIB)

EDSN(SYS 1.ISRCLIB)

MAXVIRT(256)

CLASS NAME(IGGCAS) /“ CATALOG “1

EMAJ(SYS l.CATALOG.TSO)

EMAJ(SYS 1.USERCAT1)

MAXVIRT(256)

CLASS NAME(IRRGTS) /“ RACF *I

EMAJ(GTS)

MAXVIRT(256)

The LLA class must be defined with EMAJ(LLA).

The MAXVIRT(4096), which is the default, indicates

that 4096 4k-frames (or 16Mb) are to be allowed for data

space use for LLA modules. The TSO class defines the

CLIST and REXX EXEC libraries to be managed by

VLF and 256 pages (or lMb) for TSO CLISTS. The

CATALOG class defines all catalogs that are to be man-

aged by VLF. And the RACF class defines a group tree

in storage used for group authority processing. Recom-

mendations for managing the first three of these classes

is given in later sections. RACF can only be used in a

shared environment when ail users of the RACF database

are at RACF 1.9 or later.

User applications can also use VLF for managing

objects within a data space. The applications must be

authorized programs in supervisor state or system key

and run in task mode. There is a set of VLF macros that

allow an application to define a class (COFDEFIN),

define programs that can use VLF (COFIDENT), create

objects (COFCREAT), retrieve objects (COFRETRI),

indicate a change in an object or invalidate an object

(COFNOTIF), disallow use (COFREMOV), and delete a

@ f 992 Watson & Walker, inc, * 800-553-4562 17

Cheyl Watson k
TUNING Letter September/October 1992

class (COFPURGE). More information can be found in

the MVS/ESA SPL: Application Development Macro

Reference (GC28-1857 - SP3, GC28-1647 - SP 4).

STATISTICS

Every ftiteen minutes, VLF will write an SMF type

41, subtype 3 record containing information for every

active class. This record is automatically provided in SP

4, but requires two APARs for SP 3 sites (OY28799 and

0Y28800). The following information is available for

each class:

SMF41CLS - Class name

SMF41MVT - MAXVIRT from COFVLFXX

SMF41USD - VSTOR being used

SMF41SRC - # of searches of data space

SMF41FND - # objects found in data space

SMF41ADD - # objects added to data space

SMF41DEL - # objects deleted

SMF41TRM - # objects trimmed from data space

because another object needed to be added

SMF41LRG - Largest object attempted to put in

cache

From this information, you can determine the hit ratio

by dividing SMF4 lFND by SMF4 lSRC. In general, if

you get less than an 80% hit ratio, VLF isn’t being used

efficiently. This statement doesn’t apply to LLA which

always shows close to 100% hit ratio. To improve the hit

ratio, you can either increase the number of objects in

cache by increasing MAXVLRT, or you can decrease the

total number of objects that are eligible to go into the data

space. For example, you might reduce the number of data

sets managed by TSO or LLA. Figure 4 shows a sample

report based on type41 data for the TSO/E class. Specif-

ic suggestions for reducing the number of objects are

given in the corresponding section for LLA, TSO, and

Catalog.

In Figure 4, you can see that a MAXVIRT of 8Mb

has been assigned to TSO/E (IKJEXEC), but VLF is using

less than 30% of it (MEM USED). The hit ratio is be-

tween 34 and 63%, which is not very efficient. In this

example, the activity is quite low (308 max requests in

15 minutes).

IBM Marketing Tools also has a tool called

VLFAID. VLFAID uses a GTF trace to determine which

libraries are good candidates for VLF and LLA manage-

ment. There is overhead associated with running GTF

trace for all load activity, so caution is advised in a se-
verely CPU-constrained environment.

STORAGE ISOLATION

If you keep a great deal of data in data spaces man-

aged by VLF, VLF’S large data spaces may cause storage

constraint (either for VLF or for other users). You may

find that you’ll need to storage isolate VLF. I’ve seen

some working sets that me over 80Mb of CSTOR and

ESTOR just for VLF. Since the storage isolation value

will be unique for VLF, you’ll need to assign VLF to its

own performance group in the ICS, such ax

SUBSYS=STC

TRXNAME=VLF,PGN=24

You can use storage isolation to restrict VLF’S impact

on other users by coding a limit on the working set size,

such W.

PGN=24,(DMN=nYWS S=(O,1OOOO))

This is called reverse stoxage isolation and limits the

region to 10,000 central and expanded frames (40Mb). If

you want to protect VLF from high paging itself, then

use a minimum working set size and allow the real page

rate (page-ins per clock second) to determine the number

of frames to be protected

PGN=24,(DMN=nlWSS=(2000,*)YPGRTR=(l ,2)...)

You can’t use the PPGRT parameter for VLF since

PPGRT uses the page-ins per execution time instead of

residency time and VLF has little execution time. VLF

is primarily called using cross-memory services where

the CPU time is charged to the caller and not VLF.

DATE TIME CLASS MEM MEM HIT MAx
ALLOC USED SEARCHES HITS PCT ADDS DELS TRIMS SIZE

I 92/141 07:40:48 IKJEXEC 8Mb 2352K 308 174 56.5% 5 0 0 51K
92/141 07:55:48 IKJEXEC 8Mb 2384K 239 40.6% 11 0 0 51K
92/141 08:10:48 IKJEXEC 8Mb 2408K 195 la 52.3% 7 0 0 51K
92/141 08:25,48 IKJEXEC 8Mb 2448K 237 88 38.1% o 0 51K
92/141 08:40:48 IKJEXEC 8Mb 2460K 195 88 44.2% ; o 0 51K
92/141 08:55:48 IKJEXEC 8Mb 2484K 205 102 48.8% 9 0 0 51K
92/141 09:10:48 IKJEXEC 8Mb 2504K 186 119 63.3% 6 0 0 51K
92/141 09:25:48 IKJEXEC 8Mb 2524K 138 45 34.6% 5 0 0 51K

I

Figure 4- VLF Statistics for TSO/E

18 @ 1992 Watson & Walker, Inc. ● 800-553-4562

Cheryl ‘T14.ztsonk
TUNING Letter September/October 1992

DISPATCH PRIORITY

There are a variety of opinions regarding setting of

the dispatch priority of VLF. The answer is that “IT

DEPENDS”. Most accesses to VLF are done using cross-

memory program catls and therefore do not depend on the

VLF dispatch priority. Because of that, several people

recommend that you use a low dispatch priority for VLF.

I can’t agree. VLF uses its dispatch priority during initial-

ization, when responding to operator commands, and

performing refreshes or updates.

Some sources, including the IBM Init & Tuning man-

ual, recommend putting VLF below your IMS control

region and CICS terminal owning region. I have a hard

time agreeing with this view also. Often, IMS and CICS

use VLF and will be delayed if VLF is delayed. Addi-

tionally, higher priority tasks than CICS and IMS may

need VLF services. For that reason, I recommend placing

VLF dispatch priority above your online systems and other

high priority work. If you later find that your systems are

delayed by VLF (by looking at an online monitor), then

lower it, but I doubt that you’ll need to. VLF normally

takes so little CPU time that it really doesn’t pose a prob-

lem. LLA is a different matter and is discussed in the

next section.

LLA OVERVIEW

LLA, Library Lookaside, is a facility that has been

around for several years; it’s just been greatly updated in

ESA. It still performs the original function as LLA, Link-

list Lookaside, which was to keep the directory entries for

SYS 1.LINKLIB and other linklist libraries (as defined in
memker LNKLSTXX) in storage. This reduces or elimi-

nates the number of 1/0s to the physical directory.

In ESA, LLA has been expanded to perform two more

functions. LLA can manage the directories for many load

(and non-load) libraries in addition to the linklist libraries.

It allows you to specify a number of PDSes whose direc-

tories are to be stored in LLA’s address space virtual

storage and searched in virtual storage. A second function

that ESA LLA can perform is the management of load

modules by VLF. Active modules can be placed in a

VLF-managed data space and simply be moved directly

from the VLF data space to a user’s address space rather

than being brought into the user’s address space by physi-

cal 1/0s.

Both of these facilities are meant to reduce the num-

ber of physical 1/0s. To better understand how thk

works, let’s look at how LLA handles directories. There

we two types of directories - those specified with

FREEZE and those with NOFREEZE. FREEZE tells

LLA that the direetory will not be updated without noti-

fying LLA, so LLA can therefore read the directo~ into

storage and do all in-storage searches. FREEZE is the

default for the linklist libraries and eliminates directory
1/0s. NOFREEZE tells LLA that the directory can be

updated at any time and the~fore LLA cannot depend on

the in-storage directory. There is really no reduction of

1/0 to the directory of NOFREEZE libraries since LLA

must go to the DASD directory each time, However, if

you let LLA use VLF you can reduce 1/0s during the

load of modules if they’re managed by the VLF data

space.

If the LLA class is defined to VLF in the

COFVLFXX parmlib memker, then VLF can manage

modules for LLA. LLA keeps statistics on the number

of fetches from a library and the length of each fetch.

After either 2000 module fetches from a library or after

the 10tb fetch of a single module, LLA will initiate the

module staging function. Staging refers to copying mod-

ules from DASD to the VLF data space.

When staging begins, each module in the directo~

list is given a staging value based on four components:

response time, contention, storage, and installation. VLF

will calculate the staging value based on the value for

each component (from -10,000 to +10,000) times a

weighting factor (from O to 100) for each component.

The response time is based on a calculation derived from

savings that a fetch horn VLF would provide and has a

weight factor of 75.

The contention is based on the average difference

between the minimum fetch LLA or DASD and the

duration of the fetch and has a weight factor of 50. It

provides an indication of the contention caused by shared

DASD. Storage is based on the number of processor

bytes used for keeping a module in VLF and has a

weight factor of 25. Installation is a user-defined cost

provided by an exit and has a default value of zero.

Modules which have high staging values will be

staged into the VLF data space (or remain there if they

had been previously staged). Modules with low staging

values that are atready in the VLF data space will be

overlaid. As an example, let’s begin with an IPL and

assume that LLA will simply collect information for

awhile (until 2000 requests have been made or a module

has been requested 10 times). During that period of

time, LLA will collect statistics for every module loaded.

When staging initiates, LLA will calculate a staging

value for all the modules in the directory, based on the

length of time to load the module, whether it’s on shared

DASD, the size of the module, and the weighting factors.

It will then determine which of the modules can reside in

19
@ 1992 Watson & Walker, Inc. ● 800-553-4562

CheyC Watmn k
TUNING Letter September/October 1992

VLF’S data space and notify VLF of the modules to be

managed. The modules that will be managed by VLF are

all loaded into storage at once. This staging will then

occur periodically during the day, after another 2000

requests or 10 requests to a single non-VLF-managed

module.

There are two exits that can be used to change the

standard staging, CSVLLIX 1 and CSVLLIX2. These are

described later. Modules that are staged in the VLF data

space will take less I/Os to obtain the module, but more

CPU time. The elapsed time will almost always be less.

As mentioned before, the benefit of NOFREEZE

libraries is that they can benefit from VLF management.

If VLF is not used, then NOFREEZE libraries do not

provide any benefit because each call to a module requires

that the module be read from DASD. This is because the

NOFREEZE modules are updated only on DASD and the

LLA directories may not point at the most recent modules.

STARTING LLA

If LLA is not going to use VLF to hold modules, it

can be started directly after IPL, such as:

S LLA,LLA=xx,SUB=MSTR

where “xx” is the suffix to member CSVLLAXX. If LLA

is going to use VLF, it must be started after VLF has been

started, such as:

S VLF,NN=XX,SUB=MSTR

S LLA,LLA=xx

CSVLLAXX

There can be one or more parmlib members that

define the LLA libraries. The fiist member is pointed to

by the start command, but that member can then point to

other members of parmlib or to other datasets. The

parameters are as follows:

LIBRARIES (dsnl ,dsn2,...)

where -LNKLST- is a special ddname to indicate

SYS 1.LINKLIB and all LNKLSTXX libraries.

This defines libraries to be added to LLA control.

REMOVE(dsn 1,dsn2,...)

This defines libraries to be removed from LLA

control.

LIBRARIES(dsnl,dsn2,...)

MEMBERS(mem 1,mem2,...)

Used during a refresh to identify specific modules

and libraries to be refreshed or updated.

fin

LNKMEMBERS(mem 1,mem2,...)

Used to identify Iinklist modules to be refreshed.

FREEZE/NOFREEZE(dsnl ,dsn2,...)

Defines the FREEZE characteristics of each of

the datasets defined in the LIBRARIES state-

ment. -LNKLST- defaults to FREEZE, all oth-

ers defaults to NOFREEZE.

PDS(dsnl) SUFFIX(XX)

Defines an indirect pointer. If this is specified,

LLA will select the CSVLLAXX member from

dsnl. This is often used to allow other applica-

tions to control their own library designation.

In order to understand how these are used, let’s look

at a simple example. Assume the following parmlib

members exist:

COFVLFOO:

CLASS NAME(LLA)

EMAJ(LLA)

MAXVIRT(4096)

CSVLLAOO:

LIBRARrEs(-LNKLsT-,sYs2.LoAD,APPL.LoAD)

FREEZE(SYS2.LOAD)

PDS(SYS1.PARMLIB) SUFFIX(CI)

CSVLLACI:

LIBRARIES(CICS I.LOAD)

CSVLLAUP:

LIBRARIES(SYS2.LOAD)

MEMBERS(MEMBRTA)

At start up, you might specify:

S VLF,NN=OO,SUB=MSTR

S LLA,LLA=OO

The start of VLF indicates that COFVLFOO is to be

used and this member shows that LLA can use VLF.

The start of LLA indicates that CSALLAOO is to be used.

and CSVLLAOO points to CSVLLACI in

SYS I.PARMLIB that contains additional parameters.

This set of members would cause all the linklist

directories to be read into storage, along with the directo-

ries for SYS2.LOAD, APPL.LOAD, and CICS 1.LOAD.

CICS 1.LOAD would have been obtained through the
indirect reference of PDS(SYS 1.PARMLIB)

SUFFIX. Directory searches for linklist and

SYS2.LOAD will be resolved without any I/Os because

of the FREEZE option (specified for SYS2.LOAD and

default for -LNKLST-); modules for linklist,

<u
@ 1992 Watson & Walker, Inc. ● 800-553-4562

Cheyl Watson k
TUNING Letter September/October 1992

SYS2.LOAD, APPL.LOAD, and CICS 1.LOAD will be

managed by VLF, since VLF was started before LLA and

COFVLFOO specified that LLA could use VLF.

Now, assume that you ‘ve updated module

MEMBRTA in SYS2.LOAD. You can notify LLA and

VLF with the following command:

F LLA,UPDAT&UP

This will look at CSVLLAUP and identify that mem-

ber MEMBRTA in SYS2.LOAD needs to be refreshed.

Actually, MEMBRTA will simply be deleted from the

VLF data space, the directory entry will be updated, and

the use count reset to zero.

EXITS

LLA provides two user exits to allow you to obtain

statistics and control modules. The exits are CSVLLIX 1

and CSVLLIX2. Statistics for each module are kept by

LLA and passed to the exits. These statistics include:

elapsed time to fetch the module, variations in elapsed

time with VLF or IEWFETCH, EPA (entry point address),

number of fetches per EPA, UIC, and migration age.

CSVLLIX1 is invoked during EVERY program fetch.

This exit is used to monitor and collect statistics, modify

the 2000 fetch default, force staging for a module, and/or

modify statistics to influence the trigger of staging. Since

there could be considerable overhead by invoking this exit,

it’s highly recommended that you try to use CSVLLIX2

instead. If you use CSVLLIX 1 ensure that the code is as

efficient as possible!

CSVLLIX2 is called for each module when LLA

triggers its staging function. This is done far less

frequently than mcdule loads and so takes less CPU time

than invoking CSVLLIX1 each program fetch.

CSVLLIX2 is used to analyze fetch statistics, change the

weight factors, provide an installation cost, and force a

module to be staged or to be bypassed for staging.

There is an old Washington Systems Center Flash

#8908 that is still a very useful document in helping to

understand LLA. WhiIe it was written for SP 3, most of

it is applicable to SP 4.

TUNING CATALOG & VLF

The catalog address space (CAS) can use VLF to

store catalog records. Highly referenced catalog entries

can then be accessed without any 1/0s and catalog search-

es. I need to warn you, however, that there have been

several APARs reported about this facility and you

should be as cummt as possible with maintenance. Oth-

erwise you could destroy your catalogs. No matter how

current the maintenance, be sure to back up your catalogs

prior to trying this facility. Don’t let me discourage you

too much - several sites are seeing a major benefit by

using VLF for catalog. Just be careful!

You can implement CAS and VLF simply by defin-

ing the CAS class in COFVLFXX, as shown in the VLF

overview (CLASS IGGCAS). Any catalog defined in

COFVLFXX will be controlled by VLF. The fiist refer-

ence to a catalog record will place the record in VLF’S

data space. Subsequent references on a non-shared de-

vice will be able to use the record from the VLF data

space rather than doing a physical 1/0. VLF will add

records until the data space is full (based on MAXVIRT)

and then start overlaying the least-recently-used (LRU)

entries. l%erefo~, highly referenced raords will tend to

stay in the data space.

A shared catatog and shared device present another

problem. You would certainly wrmt to know if an update

occurred on another system, so CAS must access the disk

every time if the volume is defined as shared. When

CAS is using VLF, however, it has a more efficient

technique to determine if a record has been updated.

CAS keeps a record of updates in the VVR within the

BCS. This area can accommodate 90 updates before it

fills up. CAS will look in the update record to see if a

record in VLF has been updated. If not, CAS uses the

VLF in-storage version of the catalog record. If it has

been updated, CAS performs the standard catalog search

(which takes more I/Os than the single 1/0 to retrieve the

update record), gets the new record and passes it to VLF

to overlay the previous version.

If there are more than 90 updates, CAS won’t know

which records to trust any more, so all records for that

catalog in the data space is refreshed. These refreshes

empty the data space and cause CAS and VLF to start

over (which isn’t an efficient way to go!). You could

see an increase in response times when accessing the

catalog after a refresh. As a general guideline, shared

catalogs with many updates are not good candidates for

CAS and VLF.

You can get statistics on CAS and VLF performance

in two ways. The best way is to use an operator com-

mand to get the catalog statistics by catalog. The com-

mand is:

F CATALOG,REPORT,VLF

This will give you the following stats: number of re-

cords added, number of requests, number of successful

@ 1992 Watson & Walker, Inc. * 800-553-4562
21

Cheyl Watson k
TUNING Letter September/October 7992

F CATALOG, REPORT, VLF
IEC3511 C:ATALOG ADDRESS SPACE MODIFY COMMAND ACTIVE
IEC1611 084 (048, 054, lGGOCLFQ) -003 ,OVNDLOAT, STEP8,VQINDX, ,,
IEC1611 CATALOG .[JCAT6, ,CATALOG .[lrAT6
IEC3591 CATALOG REPORT OUTPUT 871
cab++,***%***+ +,***++*+********* **.**.*cATALOG DATA spAcE cAcHE**
*+ RIT% RECORDS SEARCHES HITS DELETES SHARING INVALID “
************* ************** ************** ************** **************

*’ CATALOG.UCAT1 **
** (37~% 0000008E 000002F4 00000222 00000011 00000000 00000000 **
** ~ATALOG.UCAT2 **
** 072% OOOOIAOB 000232A0 000IcFO1 001301EFA 00000000 00000000 *’
“ CATALOG.0CAT3 ● *

094% 00001251 00033ClA 000311c’E 000012F6 00000000 00000000 **
:: CATALOG.[1CAT4 **
** 079% 00028170 000F3Ac2 000c1504 00002AOC 00000000 00000000 **
** CATALOG.UCAT5 **
*+ 027% 0001411C 0002EFF[0 0000C267 000011C4 000001A3 0000OOIB **
** CATALOG.UCAT6 **
** 083% 00009117 00042D16 000378B1 00001763 00000000 00000000 “
** CATALOC.UCAT7 **
** 092% 00005B1A 0006cE57 00064345 OOOOOEIB1 00000000 00000000 **
‘* CATALOG.MASTCAT **
** 048% 00000991 OO039F2C OO01C309 0000OOFE 00000000 00000000 **
******,******* *********+**** ************* ************** ************* *
** HIT% RECORDS SEARCHES HITS DELETES SHARING INVALID **
~As********* ***.************* ***.******catalog DATA SpACE CACHE**

Figure 5- VLFCATALOG Display Command Output

requests, number of records deleted from VLF. number of

VLF updates from shared catalog, number of VLF refresh-

es due to over 90 updates. Figure 5 is a sample from this

command.

I

There is a lot of documentation that indicates that the

(Yes, it certainly would be nice if the values were

converted from hex, but you take what you can get!)

Notice that CATALOG.UCAT5 had several refreshes (as

shown in the INVALID column). That was the reason for

the low hitratioof27%. This is obviously not agood

candidateforVLF duetothelarge numberofupdates, and

therefore, refreshes. Notice also, that the master catalog

doesn’t have as high ahit ratioas theothem. More about

that later.

Youcan also get statistics from the VLFtype41

records that are written every 15 minutes. Figure 6 is an

example of this data. The percent of hits is simply calcu-

lated by dividing the number of hits by the number of

searches. You should try for agoalofat least 80t090%.

Notice how the percent decreases whenever there is a

refresh (see the column called “OBJECT TRIMS”).

How do you improve the percent ofhits? You can

either provide more virtual storage on the COFVLFXX

memberin the MAXVIRT parameteroryou canputfewer

catalog records in the data space. You might havea

catalog, for example, that doesn’t get hit much during the

day. The few references during the day would bringa

record into the data space but the record wouldn’t get hit

often and produce apoor hit ratio. Some sites usea

different VLF parmlib member for day and night process-

ing.

master catalog shouldn't be managed byVLF. That

recommendation is based on the fact that most sites use a

master catalog primarily for pointers to user catalogs.

The alias tableis maintained in the catalog address space

and wouldn’t get any benetit from VLF. Most of the

system data sets in the master catalog have other pointers

and don’treally require acatalog search every time.

Therefore, the recommendation to avoid putting master

catalog inVLFstemsfrom the assumption thatyouhave

a“clean” master catalog. Ifyoudon’t, you might benefit

from adding your master catalog to VLF control as well.

Obviously the most efficient way to use catalogs and

VLFisto have non-shared catalogs and provide enough

MAXWRT data space for every catalog record. ‘l%is

would eliminate all read 1/0s but the fiist reference to

every catalog record. Itwouldn’tsavewriteI/Osbe-

cause if acatalog rmord is updated, the record is written

back to DASD,as well as any index records that need

updating and the catalog update record (the one that

holds 90 updates).

But you probably can’t really do all that, so here are

some alternatives:

•l Most of the following alternatives require changing

the COFVLFxxmember. Changes inthismember

willonlybecome effectivewhenVLF isstopped(P

VLF) and restarted (S VLF). Starting and stopping

VLF is fairly traumatic to the system and any appli-

cation using it, such as LLA and TSO. Therefore

you should consider how you’re going to manage

Ld @ 1992 Watson & Walker, Inc. ● 800-553-4562

ChmJ Watson 3
TUNING Letter September/October 1992

DATE

92/141
92/141
92/141
92/141
92/141
92/141
92/141
92/141
92/141
92/141
92/141
92/141

TIME

07:40:48
07:55:48
08:10:48
08:25:48
08:40:48
08:55:48
09:10:49
09:25:49
09:40:49
09:55:49
10:10:49
10:25:49

CLASS MEM
AL LOC

CAS 20.8Mb
CAS 20.8Mb
CAS 20.8Mb
CAS 20.8Mb
CAS 20.8Mb
CAS 20.8Mb
CAS 20.8Mb
CAS 20.8Mb
CAS 20.8Mb
CAS 20.8Mb
CAS 20.8Mb
CAS 20.8Mb

MEM
USED

18.2Mb
18.2Mb
18.2Mb
18.2Mb
18.3Mb
19.6Mb
18.7Mb
18.9Mb
19.2Mb
18.7Mb
18.6Mb
18.6Mb

PCT
USED SEARCHES HITS

87.5% 2682 2613
87.5% 1807 1747
8’?.6% 2090 1694
87.6% 3341 3267
88.4% 9097 7389
94.5% 23493 4368
90.2% 28677 2045
91.2% 17651 14724
92.6% 24796 22062
89.9% 14389 2114
89.8% 1192 1130
89.8% 312 305

HIT
PCT

97.4%
96.6%
81.0%
97.7%
81.2%
18.5%

7.1%
83.4%
88.9%
14.6%
94.7%
97.7%

ADDS

77
65

144
75

1515
19~16

26275
1694
2290

12228
180

27

DELS

73
58
21
74

195
340
117

34
16

9
176

27

TRIMS

o
0
0
0
0

7875
35167

0
0

20439
0
0

MAx
SIZE

21.OK
21.OK
21.OK
21.OK
21.OK
21.OK
21.OK
21.OK
21.OK
21.OK
21.OK
21.OK

Figure 6-Sample Catalog VLF Statistics

•1

changes to VLF. You might decide, forexample, to

stopandstartVLF everymomingat 5amwhenitwill

cause the least impact to the system. The only way I

can recommend changingitduring thedayisifthe

catalog is the only user ofVLFandyou’re tryingto

determine the correct catalogs tocontrol with VLF.

Start a tracking procedure to collect the number of 1/0

operations to any catalog volume before you start a

tuning process. The object of using VLF for catalogs

is to reduce the number of 1/0s and the length of 1/0s

to a DASD device. For example, you can use the

RMF Monitor I Device Activity report (Figure 7) to

collect SSCHS per second (Device Activity Rate

column) and response time (Avg Resp Time in milli-

seconds) for the catalog volumes. See Figure 7 for an

example of this report. The objective of the tuning

effort is to reduce either the number of 1/0s (on a

non-shared device) or the length of an 1/0 (on a

shared device). You’ll be using storage and a small

amount of CPU to achieve that reduction.

DEVICE AVG
VOLUME LCU ACTIVITY RESP
SERIAL RATE TIME

DsK427 OOD 0.013 11
TSO044 00D 4.200 18
TSO045 00D 2.723 20
DSK256 00D 0.001 8
DsK431 00D 0.566 15

igure 7- RMF Monitor I DASD Activity

❑

❑ If you’ve already implemented VLF and catalogs:

1. Issue the catalog display command and evaluate

the catalogs. Catatogs on shared systems that get

many refreshes and/or low hit ratios should be re-

moved from control (that is, remove them from the

COFVLFXX member).

2. Produce a report from the type 41 records to look

at the overall hit ratio of the catalogs. A hit ratio of

less than 80% indicates a poor selection of choices.

3. If the hit ratio is too low for catalogs (from the

type 41 records) and the system is not storage-con-

strained, increase MAXVIRT. Do it in stages so you

can tell when you ‘ve gotten the best benefit. Perhaps

add 20% at a time. There will come a point where

additional storage will improve the hit ratio by only a

fraction. If you do this increase slowly. you’ll be

able to tell when to stop. As you add storage evenly

for example, you might see the hit ratio move from

66% to 70% to 78% to 84% to 88% to 90% to 91%

to 92% to 93%, etc. It looks like you should stop at

88% or 90% to obtain the best improvement for the

associated storage increase.

If you can’t increase the hit ratio, the problem could

be due to a single poor catalog. Try removing the

catalog with the lowest hit ratio and reevaluate the

statistics. If this still doesn’t work, start from scratch

with the recommendations below.

4. If the hit ratio is high and you want to reduce the

storage constraint. then start reducing MAXVIRT in

the same manner as just described. Reduce it by the

same amount each time and reevaluate the hit ratio

after the change. You”ll be able to find a break-even

point along the way.

If you haven’t implemented VLF for catalogs, con-

sider the following steps:

1. Get up to current maintenance. Search all the

APARs and ensure that you’re current.

2.

3.

@ 1992 Watson & Walker, Inc.

Backup a catalog that you want to test.

Add the catalog name to COFVLFXX with the

23
* 800-553-4562

ClieyC Watson k
TUNING Letter September/October 1992

•1

minimum MAXVIRT(256). A catalog typically uses

only 60 frames, so this should be suftlcient.

4. Monitor the statistics with the operator command

to show the hit mtio.

5. Remove that catalog from VLF control and add

another one. Keep the statistics. Do this for all cata-

logs that you hope to control via VLF.

6. Now, add all the catalogs that got a good hit ratio

(over 80%) with 256 frames to COFVLFXX. Now you

can tune MAXVIRT as described above.

The reason for this technique of looking at one catalog

at a time is because analyzing multiple catalogs at one

time is very ditllcult. For example, you might have a

catalog with a very poor hit ratio but a high activity.

That catalog would keep bringing records into the data

space, overlaying other records from other caudogs.

The hit ratio of the other catalogs would be reduced

because of the f~st catalog. There isn’t a good way

to fmd this situation without looking at one catalog at

a time.

When catalog use of VLF is effective (hit ratios of

over 90?40), consider the following:

1. Reduce the number of user catalogs. Many people

have split a catalog when the activity rate grows on a

single catalog and 1/0 delays are seen. If you’ve done

that in the past and are able to reduce the I/O delays

on your catalogs, you might be able to combine them

and reduce maintenance effort and backup procedures.

2. When designing new naming structures, consider

the impact of catalogs that have a high number of

updates versus those that have few updates. For ex-

ample, one site designed a naming structtue where aIl
libraries and common datasets had a unique high-level

prefix. They were all placed in a single catalog that

had very few updates. You can also define a set of

high-level indexes for your work datasets that cart be

controlled by a non-VLF managed catalog. While this

technique isn’t applicable to all sites, it’s at least
worth the consideration if you’re in the middle of

defining new naming standards (such as for SMS).

must be recompiled before any execution and the com-

piled version is the one stored in VLF’S data space.

Thus, you can reduce the CPU time used to compile the

unchanged CLIST multiple times.

There are two problems when trying to use VLF for

TSO. First and foremost is the update problem. VLF is

automatically notified of a change to a CLIST or EXEC

only when STOW is used. Unfortunately, STOW isn’t

used in the following situations

1. AMASPZAP

2. IEBCOPY

3. IPOUPDTE

4. ISPF 3.3

5. Shared Systems

If any of these techniques are used to update a

CLIST or EXEC in a library, the user will have to manu-

ally notify VLF that a change has occurred and VLF will

use the DASD version instead of the VLF version at that

time. VLFNOTE is a TSO command that is used to

notify VLF of a change. SP 4,3 has announced that it

will support global VLFNOTE in a sysplex environment.

Another problem when using VLF is that many

CLISTS are used only once during a day. You actually

use more CPU time for CLISTS that are only used once

or at least infrequently enough to keep them in the VLF

data space.

The best performance improvements using this fea-

ture me obtained when frequently referenced, large

CLISTS or EXECS are managed by VLF. Here are some

suggestions for tuning this environment

Develop procedmes and documentation for users to

ensure that VLF is notified when CLISTS or EXECS

are updated. Show people how to use the
VLFNOTE command and set up procedures for batch

jobs that update the libraries,

Tune VLF using the type 41 records to provide

enough MAXVIRT for TSO to produce a high hit

ratio (over 80?40). If you can’t achieve a good hit

ratio without using an extremely large amount of

storage (1 Mb should be sufficient for most environ-

ments), then consider removing some of the libraries

from TSO control.

Review the concatenation of CLIST and EXEC li-

braries. Place the VLF-managed libraries at the front

of the concatenations (if possible) in order to get the

most benefit from VLF.

The most efficient way to use VLF for TSO is to

TUNING TSO & VLF ❑

TSO/E can use VLF to store CLISTS and REXX

EXECS. There are really two savings in this use. If VLF

contains the CLIST or EXEC, TSO can eliminate the I/Os

to retrieve the member from disk. Additionrdly, CLISTS •1

24
@ 1992 Watson & Walker, Inc. ● 800-553-4562

Ckeyl ‘Wat50n k
TUNING Letter September/October 1992

define system-wide CLIST and EXEC libraries that

only contain frequently used modules. This library

would then be controlled by a single person or group

who would ensure that all VLF systems are notified of

a change. I’ve used this technique for one system

where the MAXVIRT was reduced from 16M to lM

and the hit ratio improved from 75% to 100%. Not a

bad deal!

TUNING LLA

There are a lot of considerations for tuning LLA,

especially with its use of VLF. To understand them, you

should be aware of how LLA wodm as described in the

LLA OVERVIEW.

Let’s fmt consider the use of FREEZE in the

CSVLLAXX member. This feature provides the best per-

formance improvements because LLA can bypass the I/O

for all reads of the directory. Remember that the

FREEZE parameter has nothing to do with VLF usage.

The best libraries to use are those with frequent accesses

and few updates. These can include production applica-

tion libraries, system libraries, TSO panel libraries, sub-

system or vendor libraries, or other commonly used librar-

ies (e.g. COBOL subroutines that are loaded due to the

RESIDENT option discussed earlier).

LLA’s use of VLF is used to reduce the I/Os to load

frequently used, seldom-changed, modules. Since LLA

and VLF will work to identify these types of modules,

there is little reason to keep libmries managed by VLF

that have few modules that fit this requirement. Libraries

that don’t get any benefit from VLF and are specified as

NOFREEZE (and so don’t get any benefit from a ~duc-

tion in directory searches) should be removed from LLA

control.

If CLASS(LLA) is defined in COFVLFXX, then LLA

will periodically stage modules (move them) to VLF’S

data space and VLF can pass them back for subsequent

loads. That implies that the benefits me primarily from

frequently referenced modules. Application production
libraries, therefore, are seldom good candidates for VLF

since most programs in such libraries are only called once.

Keep in mind also that LLA is not notified about

progmm changes. In the NOFREEZE libraries, LLA will

always use the directory entry to obtain the latest modules.
In the FREEZE libraries, LLA assumes that you will

notify it with a refresh or update when a module changes.

Therefore, consider the frequency of update when you

decide whether to use FREEZE or NOFREEZE

Here are some suggestions for getting the most out

of VLF:

❑

•1

❑

❑

❑

Determine which libraries have high access and few

updates. This is a lot more difficult than it seems.
If you have a product that provides this information,

then you’re ahead of the game. You can use logic to

“asssume” which libraries meet the criteria. If you

have a DASD monitor that keeps I/Os by dataset

name, you can use that information.

Once you’ve found that set of libraries, collect data

on the number of I/Os to the libraries or devices

(from the RMF Monitor I Device Activity report for

example - see Figure 7) and add them to CSVLLAXX

as FREEZE libraries. You’ll also need to establish

procedures for notifying LLA of a change to any of

the libraries. Collect statistics on the device statistics

and you should see immediate savings in a decrease

to the volumes.

Review all library concatenations. The LLA-man-

aged libraries should always be first in a concatena-

tion. LLA is called for all libraries, so in a concate-

nation with a non-LLA library followed by a LLA

library, LLA will be called frost for the non-LLA

(and will return immediately saying that it’s not

managed), the program will then issue a directory

search on DASD, and if the module isn’t found will

call LLA again for the LLA-managed library.

Now review your libraries and try to determine

which libraries might be good candidates for VLF.

These libraries would have frequently accessed mod-

ules that could benefit from residency in virtual

storage. If the libraries are infrequently updated, add

them to CSVLLAXX as FREEZE libraries, otherwise

add them as NOFREEZE. Again, track the device

activity as a measure of goodness.

You can use the VLF statistics (Figure 8) to see how

many searches were satisfied without an 1/0. Unfor-

tunately, you can’t use the hit ratio to determine

anything! It will almost always be close to 100%.

LLA simply won’t call VLF if it knows the module

won’t be there. After all, it was LLA that staged the

modules to VLF so it knows which modules were

sent there. The only reason that the hit ratio isn’t

100% every time is because VLF may have deleted

or trimmed some modules because the data space

was full or modules were refreshed.

If you want to get better statistics as to which mod-

ules from which libraries are making use of VLF,

you’ll have to implement one of the LLA exits. As

mentioned before, I’d highly recommend use of

@ 1992 Watson & Walker, Inc. ● 800-553-4562 25

Cheyl Watson k
TUNING Letter September/October 1992

DATE

92/141
92/141
92/141
92/141
92/141
92/141
92/141
92/141

TIME

07:40:48
07:55:48
08:10:48
08:25:48
08:40:48
08:55:48
09:10:48
09:25:48

CLASS

CSVLLA
CSVLLA
CSVLLA
CSVLLA
CSVLLA
CSVLLA
CSVLLA
CSVLLA

MEM MEM
ALLOC USED SEARCHES HITS

16Mb 13Mb 14462 14462
16Mkl 13Mb 7657 7656

16Mb 14Mb 7542 7513

16Mb 14Mb 7704 7704
16Mb 14Mb 6318 6318
16Mb 14Mb 6418 6375
16Mb 14Mb 3242 3242
16Mb 14Mb 4292 4289

HIT
PCT ADDS DELS

100.0% 5
100.0% 10

99.6% 10
100.0% o
100.0% o

99.3% o
100.0% o
100.0% 3

0
0
4
0
0
0
0
0

MM
TRIMS SIZE

O 26.8K
O 26.8K
O 26.8K
O 26.8K
o 26.8K
o 26.8K
o 26.8K
o 26.8K

Figure 8-VLFStatistics forCSVLLA

•1

CSVLLIX2instead of CSVLLIXl. Once you’ve

collected the statistics, you may find that one or more

of the Iibrariesjustdoesn ‘t provide that much benefit.

Onesite used the following technique. It was very

effective, but I doubt that it will stand up over time as
new subsystems are implemented and workloads

change. They implemented VLF right after a storage

and CPU upgrade, gave VLF lots and lots of

MAXVIRT storage, and put ALL libraries under VLF

control. They then implemented an exit to collect

data on which modules were being staged into the

data space. They then created a single library for all

of their high use modules. That was the only library,

besides linklist of course, that was defined to LLA.

They were able to reduce the MAXVIRT (just large

enough to hold the entire library) and got some tre-
mendous savings without the overhead of LLA trying

to manage and restage modules. An interesting op-

tion.

Review the LLA dispatch priority. As I mentioned

before, the IBM Init & Tuning manual recommends

placing LLA below your CICS terminal owning region

(TOR) and IMS control region. I recommend keeping

it fairly high, even above CICS and IMS if they are

using LLA-managed libraries. I’ll go into more detail

about CICS’S use of LLA next month.

LLA is normally accessed with cross-memory servic-

es, so the dispatch priority is the user’s priority, and

CPU time will be charged to the user. LLA’s priority
is used when it’s refreshing or updating members and

libraries and when it’s staging modules to VLF. If

this occurs infrequently or if you’re running on a
system with 2 or more CPUS, then you should give
LLA a very high priority. After all, if you need to

refresh a CICS module, you don’t want to be delayed

behind CICS! And multiple CPUS ensures that the

highest priority online systems could get to another

CPU. If this updating occurs frequently enough to

disrupt your online systems, then and only then, give

it a priority below your highest priority online regions.

26 @ 1992 Watson & Walker,

❑ Since LLA and VLF require knowledge of the librar-

ies and your involvement in determining the best

libraries for LLA and VLF control, consider other

products that provide a similar function, such as

Legent’s PMO and Quick-Fetch. See the PRODUCT

HIGHLIGHT for more information.

RMF APAR

In RMF SP 4.2.1 and 4.2.2 post processor reports,

you’ll find some invalid dates. There was an error in

converting the julian date to character format. The rou-

tine assumed that January had only 29 days in 1992.

That means that without the APAR, you’ll find incorrect

dates in your reports. See APAR 0Y5 1568 for the appli-

cable fix.

SRM APAR

In the January 92 (page 18) issue, I mentioned a

special criteria age for SRM ESCT parameters. I said

that the value “32767” was a special value and indicated

that the frames in that group (types of frames within a

domain) were NEVER to go to expanded storage. This

is also documented in the SRM Init & Tuning Reference.

One of our subscribers tested this and found that it didn’t

work as indicated. It turns out that it doesn’t work at all.

If the migration age is over 32767, the frames will still

go to expanded storage. APAR OY57 191 indicates that

the problem is closed as a documentation problem (they

were going to simply change the documentation). Last

week, an IBM developer stated that they intended to

implement it as documented. Whether that will happen

soon is up in the air. It’s still very effective to code a

high value in the ESCT parameters if you want to dis-

courage movement of frames to expanded.

Inc. ● 800-553-4562

Ctl-eyl Watson k
TUNING Letter September/October 1992

Case CP1 CP2 I CP3 I CP4 Notes

A 1 Dedicated CP 3 Dedicated CPS Standalone l-way and
3 -way

B 1 Dedicated CP 2 Shared CPS Standalone l-way.
-—-— ________________ Two 2-ways
2 Shared CPS sharing 3 CPS.

c 1 Dedicated CP 2 Shared CPS Standalone l-way.
——————______________ A 2-way and a
3 Shared CPS 3-way sharing 3 CPS

D 1 Shared CP A l-way, 2-way and 3-
—_____________ way sharing 4 CPS.
2 Shared CPS
—-----— _______

3 Shared CPS

E 2 Dedicated CPS I 1 shared CP standalone 2-way.
I -------------- A l-way and 2-way
I 2 Shared CPS sharing 2 CPS. 400s

in Single Image Mode

Case Number of LPARs Number of Dedicated Dedicated Overhead

Logical Sharing Non- CPS LPARs Guide

CPS CPS Dedicated lines

CPS

A 0 0 0 4 2 2.00

B 4 2 3 1 1 7.67

c 5 2 3 1 1 9.17

D 6 3 4 0 0 9.75

E 3 2 2 2 1 7.50

TableI-PR/SMOverheadFormula -Q 1991, 1992 Alan M. Sherkow

PR/SM OVERHEAD

One of the most frequently asked questions Iget

concemstheoverheadofPR/SM. I’vediscussedPR/SM

overhead in the following issues: February91 (entire

issue), March91 page7 & 10 (I/Oelongationaadnew

PR/SMAPAR),May 91page24(PR/SM capping), De-

cember91page 12(dedicated& shared),May 92page4

and 6(CPU variability) ,and June 92 (issue on bench-

marking, seepage 6).

There really isn’t a good rule of thumb regarding the

overheadofPR/SM because itvery much dependson your

workload, the architecture ofthe hardware buffers, and the

level of the microcode. We can estimate, however, the

relative overheads between one configuration and another.

Here are two techniques to compare relative overheads.

IBM has published a formula to estimate “relative”

overhead of PR/SM based on the number of shared LPs

(logical CPUS) and the number of shared CPS (physical

CPUS). Therelationship can redescribed as:

(#of shared LPs) / (# of shared CPS)

To show an example, consider the following. A

system has 6 physical CPUS that are shared between four

LPARs. One of the LPARs has a single dedicated CP.

If you assign all 5 of the other LPs to each LPAR, the

relative overhead would be (5 * 3)/5 = 3. Assigning only

3 LPs to each LPAR would produce (3 * 3)/5 = 1.8 or

about a 6070 decrease in overhead (1.8 / 3). Notice that

this doesn’t indicate the amount of overhead, just the
relationship. This means that the least amount of over-

head occurs when you assign the minimum number of

LPs to each LPAR. I’ve found this to be very true and

had indicated so in the February 91 issue as one of the

tuning recommendations.

O 1992 Watson & Walker, inc. ● 800-553-4562
27

cheyl Watson k
7WIWVG Letter September/October 1992

Figure 9- RMF Monitor I Partition Data Report

pARTITI ON DATA REPORT

NVS/ESA SYSTPM ID PROD START 01/29/91
SP3 .1.3

INTERVAL 04.59.988
RPT VERS1ON 4 .2.1 TIME 10.00.02 CYCLE 1.000 SECONDS

NVS PARTITION NAME PROD

NUNEER OF CONFIGURED PART1TIONS 4

NUM73ER OF PHYSICAL PROCESSORS 3

WAIT COMPLETION NO*

D1 SPATCH INTERVAL DYNANIc+

-------LOGICAL PART1TION DATA -------- -- LOGICAL PART1TION PROCESSOR DATA --- ---- AVERAGE PROCESSOR UT1L1ZATION PERCENTAGES ----

NUMBER OF ----DISPATCH TIME DATA ----- LOGICAL PROCESSORS
NAME sTATus WEIGHTS CAPPING

----- PHYSICAL PROCESSORS ----
LOG PRCRS EFFEcTIVE ToTAL EFFECTIVE TOTAL LPAR MGMT EFFECTIVE TOTAL

PROD A DED 1 00.04.59.534 00.04.59.907 99.84 99.97 0.04 33.28 33.32

ESATEST A 4 YES 2 00.00.24.224 00.00.27.294 4.03 4.54 0.34 2.69 3.03

VNDEVL A 48 NO 2 00.05.24.812 00.05.25.594 54.13 54.26 0.08 36.09 36.17

TEST A 48 NO 1 00.04.02.396 00.04.02 788 80.80 80.93 0.04 26.93 26.97

● PHYSICAL* 00.00.03.935 0.43 0.43
.

TOTAL 00.14.50.966 00.14.59,518 0.93 98.99 99.92

Alan Sherkow, a well-known independent consultant

based in Whitefish Bay, Wisconsin, provides a more

detailed estimate based on his observations in client sites.

His conclusion is that the number of LPARs is atso a

factor in PR/SM overhead, as well as the presence of

dedicated LPARs. His revised formula (as presented in
Enterprise Systems Journal in March 91 and a 92 SHARE

presentation) is:

(1.5 * #of shared LPs) +
((# of LPARs sharing CPS) / (# of shared CPS)) +

((# of dedicated LPs) / (# of dedicated LPARs))

and would produce the following relationship from our

previous example (when assigning 5 LPs per LPAR):

(1.5 * 15)+(3 /5)+ (1 / 1)= 24.1

assigning only 3 LPs each woutd produce

(1.5 *9)+(3 /5)+(1/1)= 15.l

This represents a 63% decrease (15.1 / 24.1) in over-
head. Again, this isn’t an actual overhead, just a da-

tionship kdsveen two different contlgurations. This rel-

ationship works quite well when comparing configurations

on machines with similar architectures or technologies, but

like the IBM estimate doesn’t provide as good a forecast

if you’re trying to compare to different technologies. For

example, there are enough architectural differences be-

tween air-cooled and water-cooled processors that you’ll

find other differences that will affect the overhead. Dif-

ferences in the way high-speed buffers are handled also

impacts the relationship.

You can use this technique to produce a report com-

paring different configurations. Table I shows an exam-

ple of Alan’s using this technique. I’ve used this several

times and have found it to be a much closer estimate of

overhead than IBM’s. Alan also has a paper Mated to

this work in the CMG 91 Proceedings.

Notice that both these techniques represent the total

relative overhead on the machine. In my own studies,

I’ve found that when you run benchmarks on the actual

jobs, you’ll find the overhead is apportioned to each of

the LPARs unevenly. The larger LPARs will see a

smaller amount of overhead and the smaller LPARs will

see a larger amount of overhead, but I haven’t found a

good way to quantify the difference.

While we’re on the subject of PR/SM overhead, I’ve

got to make my case regarding the RMF report that pro-

;ides PR/SM overhead ;alues~ This was p;esented in the

March 91 issue on page 10. A sample report is shown in

Figure 9. Several people seem to feel that this Eport

shows aJl PR/SM overhead. In fact, some of the docu-

mentation on the report states that. This is wrong! The

report shows the amount of time that PR/SM could cap-

ture as time spent doing PR/SM dispatching and LPAR

management. In Figure 9, this shows a total of 0.93%

PR/SM overhead. This is time that is seen as uncaptured

when viewed from a single LPAR, but can actually be

captured by PR/SM itself.

This reported amount in the RMF partition report is

only a small part of the overhead (unless the low utiliza-

tion effect (LUE) is a factor). The majority of PR/SM

overhead can be found in the TCB, SRB, and uncaptured

28
@ 1992 Watson & Walker, Inc. ● 800-553-4562

Cheyl Watwn k
TUNING Letter September/October 1992

times of each LPAR. The overhead is more due to multi-

processing than PR/SM, but it still exists and can be sig-

nificant. The cause is overhead due to misses in the high

speed buffer and the elongation of address spaces due to

1/0 elongation. The only way you can identify the scope

of this overhead is to run benchmarks that quantify the

change. You’ll typically find different overheads depend-
ing on the type of workload. As an example, one system

that I looked at showed a PR/SM overhead of 2.3% from

the RMF report, 10.4% overhead in CPU time in their

CICS regions and 13.6% overhead in CPU time in their

batch work. The CPU ~erheads were determined with

benchmarks. This was an environment with two LPARs,

each taking about 50% of the machine.

MVS/ESA SP 4.3
ENHANCEMENTS

I

NEW FEATURES

MVSIESA SP 4.3 is scheduled for March 31, 1993

and provides several new facilities that people have been

asking for. If you look at the announcements, you’ll see a

heavy emphasis on improvements in APPCIMVS and

HCD (Hardware Configuration Definition). But there are

several improvements in the SMF and RMF area that are

especially helpful and haven’t really been stressed in the

announcements. This section simply provides a preview

of some of the features that will be coming.

SMF ENHANCEMENTS

This information was presented at SHARE by Bill

Richardson from the SMF Development group in Pough-

keepsie. Thanks to Bill (and others) for the wonderful

new features! The major SMF enhancement is a new

synchronization feature. Several sites (and SHARE and

GUIDE requirements) had requested the ability to syn-

chronize SMF interval recording with RMF intervals.

This would allow you to compare similar periods of time.

SP 4.3 provides that facility. It’s moved the primary
interval definition and synchronization to the SMF compo-

nent so it will be available to all applications. New pa-

rameters in the SMFPRMXX member include

INTVAL(30) indicates the default global interval

vatue in minutes for atl applica-

tions. This can be overridden in

each application.

@ 1992 Watson &

SYNCVAL(0) indicates the default global syn-

chronization in minutes for all

applications. Use of synchroniza-

tion is determined by the applica-

tion.

SMF interval recording can then use these values in

the following way. In the SYS or SUBSYS parameter,

SMF defines interval recording with the following op-

tions:

SYS(...INTERVAL(hhmmss) ..)

SYS(...INTERVAL(SMF,SYNC)..)

SYS(...INTERVAL(SMF,NOSYNC)..)

Use of hhmmss provides the same facility as before

SP 4.3. SMF will write interval records out at an inter-

val that starts with the start of the step. For example, an

INTERVAL(O06000) would write interval records out 60

minutes after the start of the step, again at 120 minutes

after the start, etc. INTERVAL(SMF) says that interval

records will be written out at intervals specified by the

SMF INTVAL interval and SYNC indicates the intervals

should be synchronized based on the SYNCVAL instead

of the step start time (NOSYNC). Using this feature and

the following feature for RMF (described in RMF EN-

HANCEMENTS), you can now get all records out for

the same time period.

This suggests that the number of records being writ-

ten at one time will increase and the performance of

SMF could be more of an issue. Because of this, I

would highly recommend that you take the effort to

increase the SMF blocksize as suggested in the March 91

issue (page 12) and increase the buffers for SMF as

described in the same article prior to implementing syn-

chronized intervals in SP 4.3.

A major benefit is the ability for any application to

interrogate SMF and obtain the current interval and sync

value, so all applications can be using the same periods

of time. It will really simplify the job for performance

analysts who need to match data from multiple subsys-

tems. (I had originally written the prior statement to say

“really simplify the performance analysts”. One of my
editors caught it. He thought that managers idl over the

country would like to accomplish that feat!)

With the synchronization facility and use of SMF’S

interval recording, you could easily look at a period of

time (e.g. one hour of peak time) and compare the RMF

activity for a performance group and associate it with all

the SMF type 30 interval records (subtypes 2 and 3) to

identify the jobs that compose that performance group.

Another minor change to SMF was a change to in-

7!4
Walker, Inc. 0800-553-4562

-.

Chetyl Wi.Won k
TUNING Letter September/October 1992

System Information
IPL Definitions

Peak Allocation Values
Average CSA to SQA Conversion

Average Use Summary
Available at End of Range

Job Information ELAP
Name Act C DMN PG ASID Time
%Mvs

%REMAIN
RSQA S51 24 15.lM
*MASTER * Soo 1 1.2M
VTMLCL s 5 1 19 1.2M
. . .

---- Percent ----

CSA ECSA SQA ESQA

53 91 105 88
34 0
53 91 105 88
47 9 78 12

-- Percent Used -
CSA ECSA SQA ESQA

o 085

3 209
0 0 83 0
8 32 11 18
0 26 0 0

------- Amount --------

CSA ECSA SQA ESQA
2316K 3268K 940K 9312K

1228K 2960K 987K 8188K
784K o

1228K 2960K 986K 8188K
1088K 308K 738K 1124K

----- Amount Used -----
CSA ECSA SQA ESQA

O 4800 73760 471K
62240 72376 1024 812K

o 416 781K 248
197K 1052K 102K 1632K

21064 851K 384 1960

Figure 10- RMF Monitor III STORC Display (SP 4.3)

cludefield SMF30DSV in allinterval records instead of

only the step termination record. This is the virtual stor-

age high water mark for the amount of space allocated to

data spaces andhiperspaces foran address space. The

field is still somewhat disappointing since itdoesn’tin-

cludeauthonzed program use, such as VLF, but right now

it’s the best information we’ve got.

RMF ENHANCEMENTS

There areseveral RMF enhancements coming withSP

4.3. The major additions include the ability to use SMF

synchronization, a common storage monitor, and tape

mount delay statistics. This material was provided in a

presentation given by Dieter K6nig from the RMF

Development lab in BLiblingen, Germany. Many thanks,

Dieter. for the information.

The RMF synchronization is indicated withone of the

following parameters in ERBRMFxx.

SYNC(SMF)
SYNC(RMF,mmM)
NOSYNC

SYNC(SMF) is the default, which corresponds to the

current RMFdefault of30 minutes. The current parame-

terofSYNC(mmM) willbeinterpreted as

SYNC(RMF,mmM).

Ithinkthemajor enhancementtoRMF isthenew

common storage monitor. It’safeature ofRMF Monitor

IIIthatallowsyou totrackCSAandSQA usagebyad-

dress space. You may already have this ability in other

online monitors, such as Boole & Babbage’s CMF,

Candle’s Omegamon/MVS and Landmark’s

TMON/MVS. But this is the fmt time it’s available for

all blue sites!

There are two new screens in Monitor III as seen in

Figures 10 and 11. The fmt screen is a STORC, Figure

10, that displays who is currently using CSA and SQA.

It’s sorted in descending sequence of total virtual storage

frames allocated. From this screen you can see the larg-

est users of the common areas. The second screen is a

STORCR display, Figure 11, that shows how much space

was used and &allocated. An “N in the ACTIVE col-

umn indicates that the job completed and left some stor-

age. Unfortunately, RMF doesn’t allow you to force it to

be heed as with some of the other monitks, but at least
it tells you who did it!

Another enhancement is the addition of tape mount

delay times. The information will be available in the

RMF Monitor I Device Activity report, Figure 12. The

Monitor I data now includes three new fields for tape

Amount of Common Storage
Job Ended Not Released at End of Job

Jobname JES-ID Date Time CSA ECSA SQA ESQA

%REMAIN 62240 72376 13312 820K
RSQA STCOO031 03/24/92 10.42.31 0 0 0 820K
CATALOG 03/24/92 10.13.15 62240 11024 912 1848
IRRDPTAB STCOOO04 03/24/92 10.14.42 0 30120 0 0
. . .

Figure 11- RMF Monitor III STORCR Display (SP 4.3)

30
@ 1992 Watson & Walker, Inc. ● 800-553-4562

Cheryl‘Watson k
TUNING Letter September/October 1992

devicex

NUMBER OF MOUNTS

AVG MOUNT TIME (hh:mm:ss)

TIME DEVICE ALLOC (hh:mm:ss)

From this information you’ll be able to determine the

average mount times for devices for any interval during

the day. The number of mounts can be used to determine

when the highest volumes occurred. The total time the

device was allocated during the interval can be used by

capacity planners to determine when, and if, new drives

need to be added (including the time of day they’re need-

ed). The asterisk at the start of the NUMBER OF

MOUNTS field occurs whenever there is a mount pending

condition at the start of the interval. An asterisk at the

end of the field indicates a mount pending condition exist-

ed at the end of the interval.

There are several other RMF enhancements with SP

4.3 including:

new exceptions (such as SLIP trap ale~ common

storage usage, transaction response time, device

resource utilization, and report performance group

data);

the ability to define new groups of jobs or

performance groups as an installation needs;

a GROUP Response Time repow,

several report enhancements (like the ability to define

which columns are to be displayed and the addi-

tion of TCB and SRB times and device 1/0 activ-

ity and response time);

a data compression and decompression facility that

can save up to 6070 on VSAM space for Monitor

III data. The compression facility was needed be-

cause the common storage and group response

data doubled the size of the Monitor III data.

There will be more on these new facilities as SP 4.3

becomes available. This is a pretty exciting release of

RMF and I’m looking forward to using it!

SPREADSHEET - a kind of program that lets you sit

at your desk and ask all kinds of neat “what i~”

questions and generate thousands of numbers instead

of actually working.

Dave Barry

Q&A

Q. I’ve seen some terrjfic benefits on jobs by using

additional buffers for QSAM files as you mentwned in

the July 91 issue. Is there a limit to the number of

buffers I can use? Also, there are some jobs that don ‘t

show any sign~icant difference. Can you explain why?

A. Them is a limit to the number of usable buffers.

First of all, if you don’t specify buffem, SAM (Sequential

Access Method) will use a default of 5 buffers for

QSAM and 2 buffem for VSAM. If you specify buffers,

SAM has a DASD limit of31 buffers or 240K (whichev-

er is smaller) for a physical 1/0. That means a file with

a blocksize of 24K could only use 10 buffers as a maxi-

mum, but a blocksize of 4K could use 60 buffers. This

is the limit for a single channel program or SSCH.

If you want to overlap processing time and 1/0 time,

specify double the maximum number of buffers. In the

previous examples, I’d use 20 24K buffers or 1204K

buffers to avoid the “galloping” effect of having two few

buffers. Remember that additional buffers affect the

amount of the job’s virtual storage and possibly central

storage. Also, the buffers for a single I/O (e.g. 240K)

are fixed below the line for the duration of the 1/0. If

you’re storage constrained due to too many fixed frames

below the line, this may be a problem. See the later Q &

A on f~ed frames below the 16Mb line.

As to the second question, I may know what the

problem is, If files are allocated in track allocation

rather than cylinder and are not accessed with ECKD

CCWS, the SSCH (channel program) will be limited to a

single track I/O. See the following Q & A for more

information on this topic.

Q. Is there a performance impact between using track

and cylinder allocation?

A. It depends! If the data set is accessed with ECKD

CCWS and is behind a controller that supports ECKD

CCWs, there is no difference in performance. These
controllers (such as 3880/13 and 3990s) provide a facility

called DEFINE EXTENT. This means that the extent is

known and the end of extent doesn’t have to be checked

at the end of every track.

If the dataset is not behind this type of controller,

logic is needed to check the end of extent at the end of

every track if the dataset was allocated in tracks and at

the end of every cylinder if the dataset was allocated in

@ 1992 Watson & Walker, Inc. ● 800-553-4562
31

Cheyl Watson i
TUNING Letter September/October 1992

DEVICE AVG AVG
DEV DEVICE

AvG AVG AVG AVG AVG AVG % % %
VOLUME LCU ACTIVITY RESP IOSQ DPB CUB DB

NUMBER AVG TIME

NUM TYPE
PBND DISC CONN DEV DEV

SERIAL RATE
DSV OF MOUNT DEVICE

TIME TIME DLY DLY DLY TIME TIME TIME
180 3480 009

CONN UT I L RESV MOUNTS TIME AL WC
0.000 00 0.0 0.0

180 3480
0.0 0.0 0.0

009 0.000
0.00 0.00 0.00 * 2* 12

00
36

0.0 0.0 0.0 0.0 0.0 0.00 0.00 0.00 1
LCU 009 0.000

1:24
0 0 0.0 0.0

1:48
0.0 0.0 0.0 0.00 0.00 0.00 3 .36 1:12

1

Figure 12- RMF Monitor I Tape Device Activity Report (SP 4.3)

cylinders. Thus, each I/O can be no more than one track

if the file was allocated in tracks, regardless of the number

of buffers defined. It’s because of this that cylinder allo-

cation provides better performance than track allocation.

By the way, you should ignore the entry on IBMLINK

that says this is an old “folk tale”. The good news is that

current software releases and newer controllers support

ECKD so the problem is disappearing and track allocation

doesn’t cause as many problems as it did.

Q. I keep getting a message that says I’ve exceeded my

limit of fired frames bet%w the 16Mb line. What’s caus-

ing zl, what can I do about it?

A. This is similar to the Q & A from the August 92

issue, but I’ve been seeing several occurrences of this.

Let me start with an explanation of why it occurs.

There are several control blocks and data areas that

must reside below the 16Mb line because they are

accessed using 24-bit addressing. Associated with this are

CCW type O channel programs. These older charmel

programs require the channel program and (sometimes) the

buffers be located below the line. Unfortunately, QSAM

is still one of the access methods that uses CCWS of type

O, although the buffers can live above the line. Buffers

are especially noticeable below the line because they are

fixed in storage for the duration of the I/O.

Because the central storage below 16Mb is limited (in

comparison to the storage above 16Mb), SRM monitors its

use. If you run out of pageable frames below 16Mb,

you’ll probably crash the system! The IEAOPTXX parmlib

member has two parameters that relate to the use of fixed

storage frames below the 16Mb line. The frost parameter,

MCCFXEPR=92 (92 is the default), indicates the percent

of storage that is fixed below the 16Mb line. If over 921Z0

of storage is fixed, SRM wilt notify the operator. A

similar parameter, RCCFXET=(82,88), is used to control

MPL adjustment. If the percent of fixed frames goes

above 88%, SRM will lower a domain’s MPL (and possi-

bly cause a unilateral swap out). SRM can only increase a

domain’s MPL if aJl other resources are underutilized
AND the percent of fwed frames below 16Mb is less thau

82%. Notice the relationship between the two parameters.

This high value of RCCFXET should be less than the

MCCFXEPR value to allow SRM to prevent the actual

shortage. That is, SRM should swap out a user prior to

hitting the actual limit.

Of course, one way to decrease the number of SRM

interruptions is to increase these values, but I wouldn’t.

They’re pretty high as it is. ‘l%e real solution is to iden-

tify the major fixed storage users and limit their impact.

A monitor, such as the RMF Monitor II ARD screen

shown in Figure 13, can identify these fixed storage

users. The column, FX BLW, shows the number of

frames that are freed below the 16Mb boundary. Look

for the larger users and determine some way to restrict

them. If they are alt the same type of program, such as

IEBCOPYS or sorts, then find a way to place them in a

separate performance group and domain and limit them

with a domain constraint.

DFSORT

There are some standard users that fix many frames

and you should be aware of them. The sort programs,

for example, can use a large amount of fixed stomge for

a long period of time. DFSORT, for example, has two

defaults that will cause a problem. One of the parame-

ters, EXCPVR, indicates how channel programs are to be

defined. EXCPVR=ALL indicates that all I/O buffers for

input, output and sort work files should be defined as

REAL storage frames, not virtual, and freed in storage

for the duration of the sort. Use of EXCPVR=ALL

reduces the CPU time of the sort, but requires more fixed

frames for the duration of the sort (many of those below

the line). EXCPVR=NOWRK indicates that sort should

use these fixed buffers for the input and output fdes, but

not the sort work files. This provides some of the CPU

improvement without f~ing as many buffers.

EXCPVR=NONE states that the buffers will be fwed by

the operating system just for the duration of the I/0, but

will take more CPU time. Certainly if the number of
fixed frames is not causing any restraint, the default of

EXCPVR=ALL is the most efficient option to use.

Since many of these buffers are below the 16Mb line

(as defined by parameter, MAXLIM, and type of sort),

use of EXCPVR=ALL may increase the problem of fixed
frames below 16Mb. The parameter, MAXLIM, with a

default of lMb indicates the amount of storage below the

16Mb line that can be used for buffers. MAXLIM ap-

plies to the following uses of DFSORT that exclusively

use buffers below the 16Mb line:

32 @ 1992 Watson & Walker, Inc. ● 800-553-4562

Cfwyl Watson k
TUNING Letter September/October 1992

. COPY

. MERGE

E15 and E35 exits

BSAM

If each sort takes lMb of fixed frames below the line,

you’d be hard-pressed to get more than a few sorts using

these facilities running concurrently. The solution is to

either reduce the amount of buffer space or use virtual

pages instead of real (or fixed pages). I’d recommend that

you fmt consider reducing the amount of buffer space,

since the EXCPVR=ALL provides significant CPU time

reductions. As an option, you could use the sort exit,

ICEIXIT, to change the the option to EXCPVR.NONE

when using any of the facilities that require buffers below

the line. When using MAXLIM, remember that the RE-

GION parameter must be large enough to accommodate

the storage requested.

Another parameter, TMAXLIM, defines the total

virtual storage both above and below the 16Mb line. 4M

is the default and includes MAXLIM. Using the normal

defaults, DFSORT would use lMb below the line and 3

Mb above the line. If fixed frames below 16Mb are a

problem, you could decrease MAXLIM to 500K and leave

TMAXLIM as it is. Therefore, 3.5Mb of pages would be

fixed above the line if you specify EXCPVR=ALL or

EXCPVR=NOWRK. This is a lot of frames! There’s a

recommendation in the DFSORT Tuning Guide, GG24-

3294, that says you get additional performance benefits for

DFSORT by increasing TMAXLIM to 8Mb. If you speci-

fy EXCPVR=ALL, that’s similar to varying 8Mb of cen-

tral storage offline! Wow! Unless the machine is empty

or you have lots and lots and lots of storage, I can’t sup-

port this recommendation.

In a non-storage constrained environment, you can

leave the defaults, but beware of running too many sorts at

one time. If you experience any freed frame shortages,

you should consider reducing MAXLIM (if constraint is

below the line), reducing TMAXLIM (if constraint is

below and above the line), changing EXCPVR from ALL

to NOWRK (to reduce the fixing slightly) or NONE (to

eliminate the long-term fixing), or limiting the number of

concutmmt sorts.

IEBCOPY

Another offender of using too many freed frames

below the line is IEBCOPY. There’s a common reco-

mmendation to use “WORK=4” on the parameter for

IEBCOPY. This indicates that IEBCOPY should use

4Mb for buffers. Running too many IEBCOPYS at one

time, with WORK=4, will deplete the number of frames

below 16Mb. Either restrict the number of IEBCOPY

jobs or reduce the WORK=4 to WORK=2 or WORK= 1

(the default).

BUFFERS

You might also see a problem with too many fixed

frames below the line if you’re using a lot of buffers in

multiple jobs. In general, the buffers are only fixed for a

very small period of time (20 ms for example), and are

then changed to pageable. The problem comes, however,

because the page is marked as needing to be fixed below

16Mb. This means that the RSM will attempt to page it

in below 16Mb during future page-ins. Thus, these pages

contribute to the storage used below 16Mb. This means

that if you’re experiencing a shortage of frames below

16Mb, then you should Educe the large number of buffer

specifications.

We’re seeing many more instances of this problem

then ever before. I think it’s because the speed of the
machines and the multi-processors are simply allowing

more concurrent jobs in the system and many more jobs

are requiring very large amounts of central storage below

the 16Mb line.

F MIG=319 CPU= 95 UIC= 29 PDT= 108 DPR=116 ARD T

09:03:18 DEV FX LS NLS X SRM TCB CPU PIN EXCP SWAP LPA CSA NV VIO
JOBNAME CONN BEL QA QA M ABS TIME TIME RT RATE RATE RT RT RT RT

MASTER 2377 0 32 0 .00 113.72 450.28 0.8 1.70 0.00 .01 .00 .08 .00
PCAUTH .0000 2 24 0 x .00 0.02 0.02 0.0 0.00 0.00 .00 .00 .00 .00
TRACE .0000 0 123 1 x .00 0.01 0.02 0.0 0.00 0.00 .00 .00 .00 .00
GRS .0000 0 20 5 x .00 0.04 0.07 0.0 0.00 0.00 .00 .00 .00 .00
CONSOLE 16.25 0 15 0 x .00 28.01 32.42 0.0 0.45 0.00 .00 .00 .03 .00
ALLOCAS .0000 0 17 0 x .00 0.03 0.03 0.3 0.00 0.00 .00 .00 .34 .00
LLA 41.80 0 18 0 x .00 8.25 11.26 0.3 10.06 0.00 .00 .00 .29 .00
Slm 43.35 0 17 0 x .00 0.22 5.56 0.0 0.00 0.00 .00 .00 .02 .00
CATALOG 911.2 0 49 0 x .00 602.01 629.04 0.1 0.11 0.00 .00 .00 .07 .00
JES2 863.4 37 34 39 .00 288.78 364.88 7.0 ----- 0.00 .00 .02 .26 .00
CHERYL 773.0 461 21 461 .00 574.34 630.04 0.1 10.02 0.00 .00 .00 .01 .00

Figure 13- RMF Monitor II ARD Display

@ 1992 Watson & Walker, Inc. ● 800-553-4562
33

Cheryl Watson k
TUNING Letter September/October 1992

MODULE - WROO

LINE PROCEDURE
NUMBER NAME

4759 END- BRANCH-EXIT
4760 BEGIN
4769 BEGIN-2
4776 MOVE
4779 READE
4782 PERFORM
4784 ADD
4795 EXTEND-BILL
4809 PRINT-TOTAL-RECS
4828 CLEAR-PRICE-TABLE
4830 SAT-AND-LAST -ROUTINE

SECTION WR160 TOTALS

STARTING
LOCATION

00B4CA
00B4D0
00B53A
00B698
OOB71O
OOB754
00B796
00B7CE
00BA6C
00BCC8
00BCEC

SECTION - WR160
SOURCE LANGUAGE-ANS COBOL

INTERVAL CPU TIME PERCENT
LENGTH SOLO TOTAL

6
106
350
120

68
66
56

670
604

36
736

.00

.00

.00

.01

.11
14.41

.07

.00

.00
24.63

.00

39.23

.00

.00

.00

.01

.11
14.41

.07

.00

.00
24.63

.00

39.23

Vs VC23X1S

CPU TIME HISTOGRAM MARGIN OF ERROR: 1. 41%
.00 6.50 13.00 19.50 26.00

. .

. .

I

Figure 14- STROBE - Sample Program Usage Report

APARS

One last item to check is any outstanding APARs.

Here are some APARs (some with related PTFs) that

relate to the fixed frame problem. Check them out to see

if they’re applicable to your system:

0Y17933 - RCEBELFX not accurate

0Y30733 - RCEBELFX negative, causes spin loops

and fRA500E & IRRA400E messages

0Y29750 - Fixed frames

0Y32514 - Pages getmained with LOC=(ANY,ANY)

but fixed below 16Mb
0Z70029 - Very old

PRODUCT HIGHLIGHT
I (

This section provides some information on products

that subscribers have found to be especially helpful. This

is not a recommendation to buy the products, but simply a

suggestion to look at them if you need a specitlc facility.
I have not done a market analysis and reviewed other

similar packages - I’m just passing on subscribers recom-

mendations for products that I’m familiar with and have

used successfully. If you have the July 91 issue, I had

several suggestions on page 14 for anyone evaluating
software packages.

PRODUCT HIGHLIGHT: STROBE

Strobe is a program from Programart that analyzes

jobs while they’re executing and produces reports that

help you determine where to tune the program. It shows

you delays for I/Os, system services, operator requests,

and several other delays. It also shows you where the

majority of the CPU time is occurring so you can analyze

the progmm for inefficiencies. Figures 14 and 15 show

sample reports from a typical STROBE run.

Figure 14, for example, shows an analysis of the

execution job in a procedme. You can see that almost

25% of the CPU time was spent in a 36-byte area called

CLEAR-PRICE-TABLE. Maybe someone could figure

out a more efficient method of clearing the table! Figure

15 shows the percent of elapsed time by program or fdes.

In this example, it shows that DFHSIP spent 9.14% of

the run time using the CPU and the file referenced by

ddname, LXZ20SD, spent 18.04% of the mn time using

the CPU and 14.73% of the run time being serviced by

the I/O subsystem.

There are other reports as well showing dataset activ-

ity, dataset characteristics, DASD usage by cylinder and

many others. The reason that I’m mentioning this prod-

uct is that several subscribers have called to say that

they’ve found signifxant savings by using Strobe on their

larger applicatio~s. Most say the the product pays for
itself with just a few applications.

TASK OR RESOURCE
DDNAME

DFHSIP c Pu
LXZ02SD 3380
DOTFILMT 3380

** R~s(yJR(-~ ~-~ D~~TR~B~~oN ● ●

---- PERCENT OF RUN TIME ----- ---- PERCENT OF RUN TIME SPENT ----- CUMULATIVE PROCEDURES
SERVICED SERVICED SERVICED SOLO SOLO SOLO

BY CPU
CAUSING SOLO CAUSING

BY I/0 BY EITHER IN CPU IN 1/0 IN EITHER CPU WAIT TIME CPU WAIT

9.14 .00 9.14 8.73 .00 8.73
18.04 14.73

52.83
32.75

8.73
18.02

52.83
13.99 32.03 13.92

3.14 .27 3.41
40.76 66.75

2.81 .27 3.08 1.58 43.84 68.33

I
Figure 15- STROBE - Sample Resoume Demand Distribution

34 @ 1992 Watson & Walker, Inc. ● 800-553-4562

Cheryl w’atsott k
TUNING Letter September/October 1992

Information on Strobe can be obtained from Progra-

mart Corporation, (617) 661-3020 or (508) 468-1155.

They’ve also just announced a new product called

APMPower, an OS/2-based product to allow you to down-

load the Strobe data to your PC and lead you through a

stepby-step analysis of your application.

PRODUCT HIGHLIGHT: VSAM 1/0 PLUS

Softworks, Inc. has been gaining a lot of loyal cus-

tomers with their family of VSAM management products.

Their VSAM I/O Plus is a product that has been providing

LSR processing for batch VSAM files for quite awhile

now. This is also available for MVS/SP sites who can’t

get the benefits of batch LSR. It supports hiperspaces and

differs from BLSR in that it doesn’t require any JCL

changes. The savings from their customers show reduc-

tions of 90% in CPU and EXCPS. I’ve received several

calls horn subscribers who have been very impressed with

their savings. The product starts at about $13,500, so it

could be fairly easy to justify based on the savings.

Softworks is in Clinton, Maryland at 800-638-9254 or

301868-6740 (fax).

PRODUCT HIGHLIGHT:
PMO & QUICK-FETCH

Legent provides two products that compete with and

complement LLA and VLF. Most people who have com-

pated PMO & Quick-Fetch to VLF & LLA choose

Legent’s products for their flexibility.

PMO, Program Management Optimizer, manages

library directories dynamically and reduces directory

searches. One of its primary benefits over LLA is that it

automatically identifies updates even across systems. It

can either replace LLA or support LLA and selectively

refresh LLA when an update occurs. Another advantage

of PMO over LLA is that it will dynamically determine

the most applicable libraries to manage.

Quick-Fetch is a complementary program that keep

high used modules in storage in order to reduce the 1/0

for loading, It provides a similar function to VLF’S sup-

port of LLA. It can automatically identify when updates

occur and so can always find the most current version.

When used with PMO, it can also identify cross-system

updates.

Both products provide online reports or batch reports

showing module and library activity. Using the reports

from PMO, for example, you could identify good candi-

dates for adding to link pack area. You can contact

Legent at 800-676-5468 x92.

REQUESTED PRODUCT

The following product has been asked for by sub-

scribers and I’ve received information from the vendor. I

have no experience with the product but wanted to re-

spond to people who had been asking for the capability.

If you know of other products that perform similar func-

tions, please let me know.

DYNA-STEP is a product to dynamically allocate

TSO steplibs. Since use of steplibs will degrade the per-

formance of any TSO user (see my January 91 issue,

which is still free), steplibs should only be used when

necessary. This product allows a user to allocate a step-

lib when it’s needed and then he it up again to improve

performance. DYNA-STEP starts at $8,2-60 is marketed

by Tone Software in Anaheim, California, (800) 833-

8663, (714) 991-9460, or fax (714) 991-1831.

FEEDBACK

FIXED DP FOR [MS

From Paul Gersch, AAA Michigan: “In the January

92 issue, page 20, the feedback from Steve Samson said

that using MTTW for IMS MPRs and BMPs would give

higher priority to 1/0 bound transactions. Since most

people ‘me running IMS with a DLI region, an I/O bound

transaction would still look CPU bound to the SRM be-

cause the I/O is executed by the DLI region. Because of

this, I recommend using freed for IMS message regions.”

I tend to agree with Michael. The problem I’ve seen is

that transactions within an MPR don’t all look the same -

some are I/O-bound and some are CPU-bound and few

are consistent. Therefore, use of MTTW would not be

able to predict the next transaction and could produce the

opposite result. That’s why I always use a fixed dispatch

priority for any online system.

SRM APAR DESCRIBES STCS

Ed Kahler from Motorola, Inc. suggested that shops

converting from SP 3.1.3 to SP 4.2 leek at APAR

0Y52039. I agree and think that everyone should take a

look at it. This APAR provides additional documentation

that will ke added to the Init & Tuning Guide (GC28-

1634) regarding the ability to assign different perfor-

mance groups, dispatch priority, and storage isolation

values to system address spaces. In summary, the docu-

mentation update includes the following description of

address spaces and performance group assignments for

G 1992 Watson & Walker, Inc. 0800-553-4562 35

Cheyl ‘W’atison k
TUNING Letter September/October 1992

privileged progmms and system address spaces. I’ve
added my own points of view in italic.

PRIVILEGED

SRM automatically assigns all privileged work to

performance group zero. Any work in performance group

zero is assigned to domain zero. Privileged work is de-

fined by the user in the program properties table (PPT) via

the SCHEDXX member of parndib. Any programs with

the keyword of PRIV in SCHEDXX are considered to be

privileged and will be non-swappable except for long wait

swaps and will run in the privileged dispatch priority.

This priority is assigned by the user in the PVLDP= pa-

rameter of the IRS (IEAIPSXX in parmlib). Privileged

programs cannot be assigned to a non-zero PGN.

SYSTEM PRIVILEGED

Some MVS components have separate programs that

are treated as privileged even though they are not in the

PPT. These address spaces are assigned to performance

group zero and a high dispatch priority, X’FF’. Examples

of these address spaces am

MASTFR

DUMPSRV

CATALOG

SMF
GRS

Master scheduler

Dumping services

Catalog address space

System Management Facility

Global Resource Serialization

GRS is an exception in this list because it can be

assigned to a non-zero PGN by the user. The users can’t

override the GRS dispatch priority of X’FF’ on the new

PGN, but they can override the system default storage

isolation. GRS is given a forced storage isolation of

PWSS=(32000,*) which indicates that pages won’ t be

stolen from GRS. The reason behind this was based on

the use of GRS in a global environment where other sys-
tems could be delayed as well as the host system. In sites

that don’ t use global GRS, you may want to reduce that

storage isolation by placing GRS in a separate pe@or-

mance group. A value of PWSS=(O,*) on the PGN will

cause GRS to be treated like all other address spaces and

I highly recommend this for non-global GRS sites.

HIGH DPRTY SYSTEM ADDRESS SPACES

Some address spaces are assigned to the standard STC

performance group and can be assigned to any PGN in the
IPS, but will always have a high dispatch priority OF

X’FF’. These address spaces include:

CONSOLE Communications (operator interface)

RASP Real Storage Manager (RSM)

XCFAS Cross-system Coupling Facility (XCF)

--

IOSAS Input/output supervisor (IOS)

SMXC DF/SMS addms space for PDSES

You could assign any of these to their own PGN by

assigning TRXNAME to a PGN, such ax

suEsYs=sTcmN=5
TRXNAME=CONSOLEJWN=25
TRXNAME=RASPYGN=26

Just remember that the DP= parameter on these PGNs

will not have any effect.

OTHER SYSTEM ADDRESS SPACES

Other system address spaces will be treated like

ANY other workloads in the system. You can specify

performance groups, storage isolation, and dispatch prior-

ities for them. They include

PCAUTH Cross memory services

TRACE System trace

ALLOCAS Allocation address space

LLA Library Lookaside

VLF Virtual Lookaside

The APAR mentions that setting a high priority for

LLA and VLF will reduce the time to initialize and

refresh LLA and VLF, but warns against mnning them at

a higher dispatch priority than the IMS control region or

CICS TOR (terminal owning region). I disagree with

this last recommendation. First of all, the only time that

this is of concern is on a uni-processor, because LLA or

VLF could only occupy one CPU at a time, thus allowing

M4S or CICS to execute on ayother CPU. Primarily I

disagree with it because IMS and CICS can use LLA and

VLF as a server and you wouldn’ t want them to wait for

a refresh, for example. Therefore, except on a uni-pro-

cessor, I would run LL4 and VLF at a very high dispatch
priori~. See more comments in the VLF OVERVIEW

and TUNING LLA & VLF.

CHERYL’S RECOMMENDATION

I would recommend that you define a single unique

perjlormance group for all i14VS system address spaces

and assign the TRXNAMES in the ICS. Give this pe~or-

mance group a very high dispatch priority. It probably

won’ t consume a large amount of service because most

service is reported in the caller’s address space and not

in the system aaliress space. To determ”ne the overhead

of MVS, you can add performance group zero and this

new PGN. Then assign all other STCS to a lower priori-

ty below any online systems. This is very beneficial to

those sites that run with 50 to 150 started tasks all day

long and don’ t know what type of jobs run as STCS.

w @ 1992 Watson & Walker, Inc. ● 800-553-4562

Ctieyl W4Mon >
TUNING Letter September/October 1992

A sample ICS and IPS for SP 4.2 m“ght look like:

SUBSYS=STC,PGN=3 J?PGN=300

TRxNAME=ALLocAspGN.31

TRxNAME=coNsoLEpGN=31

TRXNAME.GRS,PGN=31

TRxNAME=IosAspGN.31

TRxNAME.LLApGN=31

TRxNAME.PcAuTHpGN=31

TRXNAME=RASP?PGN=31

mXNAME=sMxcpGN.31

TRXNAME=TMCE,PGN=31

TRxNAME=vLFpGN=31

TRmAME=xcFAspGN=31

DMN=3,CNSTR=(I0,25),.. /“ BATCH *I

DMN=5,CNSTR=(999,999) I* SYSTEM *I

PGN=3,(DMN=3,DP=M6,. ..)

PGN=31,(DMN=5,DP=F93, ...)

To determ”ne the total resources used by MVS address

spaces, add PGN=O and PGN=31 resources. To see

which dispatch priorities and perjiormunce groups are are

overridden, look at any nwnitor that shows pe~ormance

groups and dispatch priorities. Figure 1 shows an RMF

Monitor II ASD report showing the performance group

and the alspatch priorities (DP PR).

Cheryl Watson’sTUNING Letter, September/October,1992,
VO1.2, NOS.8, 9

Published moldy by Wstson & Walker, Inc.

Pssblishec Tom Wstker

Edito~ Cheryl Watson

PURPOSE: To provide praeticsf MVS tuning knowledge and

techniques which achieve savings by redueing costs or improving

response times.

SUBSCRIPTION RATES: $295 psr year (12 issues). (1993 is 6

issues.) Outside North Atnenca, $345 per year. Payment may he

by check drawn on a bank located in the U.S., money order, credit

card, or wire transfer. Issues are mailed via first class maiL Back

issues are available for $25 each ($50 for double issues and 1993

back issues). Send subscriptions, inquiries, address changes, and

all correspondence to Watson& Walker, Inc., 814 Sandriogharn

Lane, Lutz, FL 33549-6801, USA. Tel (800) 553-4562, (813)

949-3673, Fax: (813) 949-3674

@ 1992 Watson & Walker Inc. All rights reserved. Reproduc.
thnsof this document is permitted only for internal useat the

same physical address. Permission is required for exceptions to

this rule.

The following are trademarks of IBM Corporation: MVS/XA,

MVWESA, MVSASP, PIUSM, HIPERSPACE, ES/9000, ESCON,

CICS, DB2, DFSMS. The following are also registered trade-

marks: CMF of Boole & Babhage Corporation, MDF of Asndafd

Corporation and MLPF of Hitachi Dsta Systems.

NOTE: IMPLEMENTATION OF ANY SUGGESTIONS

SHOULD BE PRECEDED BY A CONTROLLED TEST AND
IS THE RESPONSIBILITY OF THE READER.

1993 CLASSES
TUNING WITH SMF AND RMF Taught by:

San Francisco February 15-19 JERRY KING
Sarasota, FL June 7- 11 CHERYL WATSON

Washington, DC September 20-24 JERRY KING
Sarasota, FL October 18-22 CHERYL WATSON

ADVANCED SRM AND ESA TUNING

San Francisco February 22-26

Sarasota, FL June 14-18

NOTE June 13- One optional day of Basic SRM -$500.

New York City Sept. 27- Oct. 1 JERRY KING

Sarasota, FL October 25-29 CHERYL WATSON

NOTE Oct. 24- One optional day of Basic SRM -$500.

JERRY KING
CHERYL WATSON

37
@ 1992 Watson & Walker, Inc. ● 800-553-4562

Cheryl Watson k
TUNING Letter September/October 1992

PRAISE FROM OUR READERS: ~

“Excellent! Has saved us countless doUars!”

“A great tool for training my stafj”
“The best periodical I receive... consistently

indicates the areas to be monitored after a
change. ”

“The best tuning tool available. ”
“...should be part of eveqy system

programmer’s tool box. ”
“Terrijic - it’s useful for both novice and

experienced performance analysts. ”
“News you can use. ”
“Everyone ... looks forward to seeing it. ”
“A bargain at twice the price!”

“Great, practical, no jluf$”
“I especially like the recommendations ...”
“Best thing I have ever come across. ”

“Solid, down-to-earth advice, presented clearly

and logically. ”

Jannary
February
March
April
May
June
July
August
September
October
November
December

January
February
April

May
June
July
August
Sep/Ott

1991 ISSUES
Tuning TSO (fkee issue)
PR/SM, Central Storage
Central Storage
Tuning DASD
Tuning Paging & Swapping
MVSIESA Measurements
Reducing I/O
Reducing CPU
Tuning VSAM
Designing a new IPS
More on IPS Design
IPS Design

1992 ISSUES
Expanded Storage
Service Levels (Online, TSO)
Service Levels
(Batch, Other, Negotiations)
Variability
Benchmarking
Miscellaneous Tuning Tips
Batch Application Tuning I
Batch Application Tuning II, VLF,
LLA, Batch LSR, Misc. Tuning Tipa

SUBSCRIBE!
TO SUBSCRIBE TO CHERYL WATSON’S TUNING LETTER: Call! Or mail or fax this form to Watson &
Walker, 814 Sandringham Lane, Luta, FL 33549-6801, USA. Tel: 800-553-4562,813-949-3673, Fax: 813-949-3674
NO RISK: You may cancel your subscription at any time and receive a pro-rated refund.

•l 12 monthly issues -$295 (Outside North America: $345). Checks must be drawn on a U.S.

bank. Contact us if you need wire instructions.

•l Check enclosed •l Bill me ❑ P. O. Use my •l VISA •l MasterCard

Card Number Exp. Date Signature

BACK ISSUES: $25.00 EACH ($50.00 for 1993 issues) January 1991, our first issue, is free.

Back issues (month and year desiredx

Be sure to include your FLOOR, ROOM NUMBER, or MAIL STOP where appropriate. PLEASE PRINT.

Name

Company/Mail Stop

Address

City, State, Zip

Country Telephone Fax

38
@ 1992 Watson & Walker, Inc. ● 800-553-4562

Cheyl Watson k
TUNING Letter Upahtes for Sep/Ott 1992 Issue

This contains updates to the September/October 1992 issue and should be filed at the back of that issue. Please replace

any previous update sheets. The date of this update is: 6/30/93.

MORE ON LLA & VLF (update on 12/92)

On page 17, I described VLF objects as being any-

thing, such as “modules, CLISTS, EXECS, catalog records,

ISPF panels, ISPF messages, or RACF group records.”

This implied that ISPF panels and messages were support-

ed by VLF when in fact they aren’t currently supported.

They are supported by LLA. That comment generated

several questions regarding ISPF directories and LLA and

VLF, so here’s a short summary.

The ISPF panel and message libraries can definitely

be added to LLA control by including them in the

CSVLLAXX parameter member. Any directory searches

for these libraries will be satisfied by LLA and you will

reduce 1/0 delays for directory searches. They’re very

good candidates for LLA control due to their high

activity. LLA, however, is smart enough to bypass VLF

management of these members since VLF is only used by

LLA for load modules.

Actually, any library that is accessed via a BLDL

access can benefit from LLA, but only load modules will

be passed from LLA to VLF control.

LEGENT PHONE NUMBER (update on 12/92)

Here’s a better phone number for Legent rather than

the one I listed in the Product Highlight of PMO and

Quick-Fetch: 800-676-5468 x92.

SUBSCRIBER FEEDBACK (update on l/93)

Paul Gersch of AAA Michigan (whose name I totally

got wrong in the FEEDBACK section - sorry, Paul!) had

some additional comments on the September issue. I

really appreciate this kind of feedback - please keep it

coming !

1) VSAM BLSR - If the VSAM file used to be an

ISAM file and was converted to VSAM with no

program changes, BLSR won’t work (resulted in a

loop). It’s one of the situations that IBM doesn’t

support.

2) HBAID - It uses SMF as input, not GTF like I

mentioned on page 13. VLFAID, VLBPAA,

OLBPAA do use GTF.

3) Quickfetch - Paul compared Quickfetch and VLF

in an IMS environment. He found that Quickfetch

will produce a higher hit ratio with the same amount

of memory or the same ratio if VLF is given more

memofy (his experience was using 7M for Quickfetch

and 12M for VLF). VLF took less CPU time, but

Quickfetch produced better reports. He has a paper in

the CMG 91 Proceedings on his study.

Bill Fairchild, one of my favorite gurus at Landmark

Systems updated me with more info on the Q & A

regarding track allocation:

1) On page 31, I said that track allocation makes

no difference in performance if the data set is

behind a cache controller. As Bill points out,

that’s not always true. What matters is the type

of channel program. Most cache controllers

support ECKD CCWS, and use of ECKD CCWS

will not effect performance. If a program uses

CKD CCWS (as in older, home-grown

progmms), it will experience a delay due to

track allocation. This is seldom a problem since

almost all applications now use ECKD CCWS.

There’s even a front-end to EXCP that converts

CKD channel programs to ECKD if the device is

on an ECKD-capable controller.

2) On page 32, I also stated that older channel

programs (CCW format O) requires both the

channel program and the buffers be located

below the line. Bill indicates that the statement

isn’t totally true. The programs must reside

below the 16M line, but the buffers can be

above the line if the CCWS use indirect

addressing. This feature allows buffers to reside

above 16M. It just depends on how it’s coded.

MORE ON IRA500E (update on 6/30/93)

Chen-Yu Hu from C. R. Bard, Inc. found another

APAR that addresses the fixed frame shortage problem as

noted by message IRA500E. This topic was addressed in

the August 1992 issue on page 26 and the Sep/Ott 92

issue on pages 32 to 34. They were receiving message

IRA500E and RMFMON and TMON/MVS didn’t show

any storage shortages. From IBMIJNK, they found

APAR 0Y57286. After applying PTF UY84041, the

problem was solved.

@ 1993 Watson & Walker, Inc. ● 800-553-4562 39

